
Improving agility by managing shared libraries
in microservices

Saulo S. de Toledo1, Antonio Martini2, and Dag I.K. Sjøberg3

1 University of Oslo, Norway, saulos@ifi.uio.no
2 University of Oslo, Norway, antonima@ifi.uio.no

3 University of Oslo, Norway, dagsj@ifi.uio.no

Abstract. Using microservices is a way of supporting an agile architec-
ture. However, if the microservices development is not properly managed,
the teams’ development velocity may be affected, reducing agility and
increasing architectural technical debt. This paper investigates how to
manage the use of shared libraries in microservices to improve agility dur-
ing development. We interviewed practitioners from four large interna-
tional companies involved in microservices projects to identify problems
when using shared libraries. Our results show that the participating com-
panies had issues with shared libraries as follows: coupling among teams,
delays on fixes due to overhead on libraries development teams, and need
to maintain many versions of the libraries. Our results highlight that the
use of shared libraries may hinder agility on microservices. Thus, their
use should be restricted to situations where shared libraries cannot be
replaced by a microservice and the costs of replicating the code on each
service is very high.

Keywords: Cross-company study, Multiple-case study, Software qual-
ity, Qualitative analysis, Architectural Technical Debt

1 Introduction

A microservices architecture may be considered a kind of agile architecture. Over
the years, large companies such as Amazon and Netflix shared their success histo-
ries with microservices on dozens of presentations1, always highlighting how such
architectural style helped them to be agile and surpass many of the limitations
and impediments they had in their previous monolithic software solutions. Since
then, many other companies and practitioners tried to learn about microservices
and adopted them in their projects.

However, systems that use microservices may become more complex than
monolith systems [8]. Practitioners are still struggling with the adoption of this
architectural style in their projects, and there is not much knowledge about
Architectural Technical Debt (ATD) in microservices [10].

1 Examples of presentations are “Mastering Chaos” by Josh Evans (Netflix, 2016),
“Amazon and the Lean Cloud” by Werner Vogels (Amazon, 2011) and “What We
Got Wrong: Lessons from the Birth of Microservices” by Ben Sigelma (Google, 2018).



2 de Toledo et al.

ATD is a metaphor used to describe architectural suboptimal decisions that,
in exchange of benefits in the short term, incurs future additional costs for the
software. There are many studies on ATD in general but few on ATD in mi-
croservices and no discussion about agility. Our previous study [10] investigates
what is ATD in microservices through a qualitative case study in a single com-
pany, Lenarduzzi and Taibi [5] presents a position paper about code debt on
microservices, also in a case study in a single company, Bogner et al. [3] per-
formed a qualitative case study in 10 companies to explore evolvability assurance
processes for microservice-based systems. The three studies have distinct scopes.

In this study, we investigate the practice of using shared libraries in compa-
nies that use microservices, and hoalw do these companies manage such libraries
in order to improve agility. We define a shared library as a piece of software de-
veloped in-house containing a collection of resources used by several components.
Externally developed components such as frameworks and language support ex-
tensions are not considered shared libraries in this study. Shared libraries are
used as a black box by the different components, have their own version man-
agement and are copied and bundled together with the components.

Taibi and Lenarduzzi [9] have shown that the use of shared libraries may be
a microservice bad smell and have proposed solutions for removing the smell.
We extend that work by presenting an expanded list of issues and solutions, and
do it in the context of different companies.

We pose the research questions as follows:
RQ1: Which practical issues when using shared libraries in microservices

hinder agility in organizations?
RQ2: Which solutions do developers apply to to solve such issues?
In order to answer these questions, we conducted a multiple-case study in

four large international companies that use microservices. The remainder of this
paper is structured as follows: Section 2 presents our background, Section 3
our methodology, Section 4 our results, Section 5 our discussion and threats to
validity. Section 6 concludes and outlines future work.

2 Background

Using microservices architecture is an approach that decomposes a single appli-
cation into a collection of small and loosely coupled services; such services are
autonomous, independent of each other and run on separate processes [6]. A few
other characteristics are also taken in consideration while defining microservices,
such as loose coupling, organization around business capabilities and ownership
by small teams.

Microservices may improve agility by allowing teams to focus on small pieces
of software, facilitating aspects like change, scalability and testing. As it raises
new ways of developing software, it also raises new kinds of ATD [10]. If properly
managed, the accumulation of ATD may be beneficial to the software develop-
ment, but it is necessary to know when the debt should be avoided and how to
prevent its accumulation [7].



Improving agility by managing shared libraries in microservices 3

ATD is based on financial terms and has three main concepts [2]: debt, which
describes a sub-optimal solution that yields short-term benefits, but recurring
to the later payment of some interest; interest, which is the additional cost that
has to be paid because of the accumulation of debt; and principal, which is the
cost of refactoring in order to remove the debt.

3 Methodology

We conducted a multiple-case study in four large international companies, with
more than 1000 employees. For confidentiality reasons, the companies are named
A, B, C and D, respectively. The studied projects operate in the domains as
follows, respectively: financial systems, healthcare systems, city management
and transport mobility.

We interviewed six architects: one from Company A, two from each of Com-
panies B and C, and one from Company D. We conducted semi-structured inter-
views that lasted from 30 minutes to one and a half hours. We discussed several
aspects of architecture beyond the scope of this investigation, such as architec-
tural issues and solutions while using microservices. The questions in the inter-
view guide relevant to this study are available at https://bit.ly/ImprAgilitySL.
Three of the interviews were conducted face-to-face. The three other ones were
conducted through remote audio calls due to the physical distance between the
parts.

4 Results

4.1 The issues caused by using shared libraries

Table 1 shows which issues regarding shared libraries that were found in which
companies. We refer to the those issues by using their IDs between parenthesis
in the next paragraphs. The context related to the issues discussed below is
illustrated in Figure 1, an example reported by Company B: A team is assigned
to create and maintain a library for authentication and authorization. Versions of
the library are regularly released with fixes or new functionalities. Other teams
are assigned to develop microservices. Eventually and due to several reasons,
several microservices end up using distinct versions of the library. We present
below the causes and implications of such circumstances for each company in
the context of the projects we investigated.

Company A could not migrate all the clients to a newer version of a library
right after its release. Distinct teams have different priorities: some services are
critical, some are secondary, some have more urgent updates (1). Such a scenario
required libraries maintainers to be active in supporting previous versions of their
libraries that were still being used in production (2). Even in situations where
the library was supposed to be updated soon, the company experienced delays in
the process due to other priorities (1). In addition, the company also identified
situations where early adopters resisted to migrate (5), since a new version of



4 de Toledo et al.

ID Issue Company

A B C D

1 Impossibility to update library in service due to priorities X X
2 Need to maintain too many versions of the library X X
3 Impossibility to update library in service due to breaking changes X
4 Delays while waiting for fixes X X X
5 Early adopters refusing to migrate X
6 Failures due to unknown use cases X X
7 Failures after library upgrades X X
8 Overhead to library maintainers X X X
9 Dependent agile teams X X X X

Table 1. Issues reported by companies as the result of using shared libraries

the library was released right after they finished the integration of the previous
version in their project.

In Company B, the developers experienced a number of system breaks. Later
they identified that part of the breaks were caused by the use of libraries in many
unforeseen and untested situations (6). In addition, Company B also noticed an
overhead on library maintainers (8) and consequent delays. Since the functional-
ity was provided by the libraries, the teams using them had to wait for the fixes,
which caused delays in new microservices releases (4). In some situations, the
new versions of the libraries caused new issues that prevented the microservices
to be released in production right away (7).

Company C, similarly to Company A, found itself in a situation where it was
not possible to migrate all the clients, which required teams to support many
deprecated versions of libraries (2). Breaking changes and internal roadmap pri-
orities were some of the factors that prevented developers to use new versions of
the libraries (3 and 1). The use of shared libraries became a bottleneck, causing
failures on microservices (6 and 7), delays while waiting for fixes (4) and an
unexpected amount of extra work for library developers (8).

Company D reported delays in delivering new functionalities as the most
damaging issue connected to the use of shared libraries (4). The library develop-
ers had to handle an extensive amount of change requests, including requests for

Fig. 1. Shared libraries example



Improving agility by managing shared libraries in microservices 5

additional features and fixes (8). The microservices developers were frequently
blocked while waiting for the arrival of the new versions of the libraries.

In all four companies, there was a clear dependency (coupling) among the
microservices developers and the library teams (9).

4.2 How to manage issues regarding the use of shared libraries

All the companies reported that the use of shared libraries should be reduced as
much as possible. Company B reported that many libraries implemented trivial
functionality that could be implemented by the microservices themselves, and
the fixes could be implemented by the teams, reducing the delays caused by third-
party developers. Company D suggested that well-defined and well-documented
interfaces of their own implementations were important for guiding practitioners
when they did not use shared libraries to provide required functionality.

Figure 2 shows solutions proposed by the companies for the issues caused by
the use of shared libraries. Considering the example presented in Figure 1, simple
functionalities, such as extracting an ID or user name from a token, could be im-
plemented by the services themselves. Such a functionality is easy to implement,
usually by using a well-known technique that can be learned by the developers,
and that does not require the use of an entire library. On the other hand, some
functionalities are complex and could involve, as in our example, many security
steps. In such circumstances, an external microservice with a well-defined in-
terface, good documentation and a versioning policy should be maintained by
a separate team. Well-defined interfaces should not be changed unless in ex-
ceptional cases, meaning that internal bug fixes may be conducted without the
other services noticing it, and new functionality may be added without breaking
previous behavior unless a breaking change is strictly necessary. Such a scenario
reduces the need for changes in the other microservices that are using the afore-
mentioned interfaces. Finally, if there are important reasons for not using one
of the approaches above, the use of shared libraries may be acceptable. Similar
approaches may be found in other migration reports. Balalaie et al [1], for ex-
ample, moved common libraries to microservices when they migrated to such an
architecture style. Hasselbring et al. [4] argue that code should not be shared
among microservices because teams and applications should be as independent
and loosely coupled as possible.

5 Discussion and Threats to Validity

Our results suggest that using shared libraries in some contexts impacts on the
development flow, causing delays, reducing development velocity and hindering
agility. In such cases, shared libraries are an ATD that may lead to costly interest
if not managed properly. By sharing the experience from other practitioners on
issues and solutions, we can prevent others from having to pay high software
maintenance costs later.



6 de Toledo et al.

Fig. 2. How to handle shared functionality

We answer the research questions introduced in Section 1 by listing the issues
(RQ1) raised by the use of shared libraries and by presenting corresponding solu-
tions (RQ2). The issues we identified do not seem connected to any specific appli-
cation domain; the practitioners from the different companies complained about
similar issues and solutions. We do not claim that shared libraries should never
be used. However, their use should be controlled to prevent high costs. There
are also drawbacks of such an approach. For example, it may incur additional
latency; performance may decrease due to network as opposed to in-memory in-
vocations; reliability may decrease since the service might not be reachable; and
complex functionality may not be possible to be implemented in a distributed
system. Such drawbacks should be carefully considered in practical situations.

Companies should also consider the reasons for replacing their shared li-
braries. There may be alternative solutions, such as improving processes for de-
velopment, testing and quality assurance, which should be considered when the
drawbacks of moving to services may be more costly than using shared libraries.

Regarding the validity of this study, we consider the following threats: (i) The
interviewees may have interpreted the concept of shared libraries differently. We
mitigated this threat by asking the interviewees to clarify if they were talking
about libraries developed internally or about external dependencies; (ii) Our
sample of interviewees was small from each company, we do not know how rep-
resentative the opinions in this study were for the investigated companies. Still,
the sample was heterogeneous and the practitioners were located in three dif-
ferent countries, with projects from four different companies; (iii) There might
be factors that the interviewees were not aware of or did not express in the
interviews, such as the quality of the implementations and management issues.

6 Conclusions and Future Work

In four Europe-based companies, we identified a set of issues that reduce de-
velopment velocity and hinder team agility while using shared libraries in mi-
croservices. We highlighted two solutions: creating additional microservices or
implementing the code in the microservices themselves. Although these solutions
have been reported by Taibi and Lenarduzzi [9], we went beyond their work by



Improving agility by managing shared libraries in microservices 7

presenting and discussing a more comprehensive list of issues, and relating them
all to the different companies. Our results suggest that the use of shared libraries
may increase the complexity of the system, which in turn decreases development
agility, cause delays and raises maintainability costs. Our results do not indicate
that shared libraries should not be used at all, but if there are no acceptable
alternatives, they should be used rather carefully as they often generate costly
interest. As an alternative to the use of shared libraries, simple functionalities
should be implemented by each microservice, whereas complex functionalities
should be implemented by external microservices with well defined interfaces,
good documentation and adequate versioning policies.

As future work, we propose a further investigation of the problem, increasing
the size of the sample and looking for practitioners with different experiences. We
would also like to investigate the problem and their solutions with other architec-
tural styles, like Service Oriented Architecture, in order to identify whether there
are other solutions proposed by practitioners that could be used in microservices.
In addition, we would like to investigate the external dependencies.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture (2016)

2. Besker, T., Martini, A., Bosch, J.: Managing architectural technical debt: A unified
model and systematic literature review. Journal of Systems and Software 135
(2018)

3. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the Evolvability
of Microservices: Insights into Industry Practices and Challenges. In: IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME) (2019)

4. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. In: Proceedings - IEEE International Conference on
Software Architecture Workshops (ICSAW): Side Track Proceedings (2017)

5. Lenarduzzi, V., Taibi, D.: Microservices, Continuous Architecture, and Technical
Debt Interest: An Empirical Study. Euromicro SEAA. Work in Progress (2018)

6. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014). URL https://www.martinfowler.com/articles/microservices.html

7. Martini, A., Bosch, J.: An empirically developed method to aid decisions on ar-
chitectural technical debt refactoring: AnaConDebt. In: Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE) (2016)

8. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of mi-
croservices: A Systematic grey literature review. Journal of Systems and Software
146 (2018)

9. Taibi, D., Lenarduzzi, V.: On the Definition of Microservice Bad Smells. IEEE
Software 35(3) (2018)

10. de Toledo, S.S., Martini, A., Przybyszewska, A., Sjøberg, D.I.K.: Architectural
Technical Debt in Microservices: A Case Study in a Large Company. In: 2019
IEEE/ACM International Conference on Technical Debt (TechDebt) (2019)


