
Certification as a service

Sebastian Copei1? and Manuel Wickert2∗ and Albert Zündorf3

1 Kassel University, Kassel, Germany,
sco@uni-kassel.de

2 Frauenhofer IEE, Kassel, Germany,
manuel.wickert@iee.frauenhofer.de
3 Kassel University, Kassel, Germany,

zuendorf@uni-kassel.de

Summary. The development of industry 4.0 and smart energy IT-
Components relies on highly standardized communication protocols to
reach vendor-independent interoperability. The interoperability is re-
quired to build complex systems without vendor lock-in and stay in
operation for many years without frequent hardware changes. However,
the classical standardization and certification processes for such com-
munication protocols are typically incompatible with modern agile soft-
ware development processes. This increases the complexity of building
microservice-based systems or cloud-native solutions in these domains.
To cope with that, we propose an agile method for the standardiza-
tion of communication protocols. We show that this approach will be
compatible with agile development processes and present a cloud-native
certification service architecture that works within a continuous integra-
tion and deployment pipeline, seamlessly. This will support the efficiency
of building microservices and cloud-native applications for the industry
4.0 and smart energy domain.

Key words: microservices, certification, saas, agile, software as a ser-
vice, platform as a service

1 Motivation

Vendor independent scaling of distributed systems is often very complex. One of
the key challenges is using the same interfaces, protocols, and data models for
inter-service communication. For industrial processes as well as for energy system
technology this is very often the motivation for standardization of protocols such
as (OPC UA [13], IEC 61850 [9], IEC 60870-5-104 [8], etc.). These standardized
protocols enable interoperability between different vendors of software systems
or integrated devices. The use of a standard is also helpful as a sales argument
for the vendors. For the customers, buying a product with standard interfaces
reduces the dependency to a certain company. Especially for industrial processes
or in the energy domain where integrated devices stay in operation for years or
decades, the independence of a certain company is crucial.

? These two authors contributed equally



2 Sebastian Copei and Manuel Wickert∗ and Albert Zündorf

Test & 
CertificationImplementation

Requirements Standard 
Specification

Publishing 
Standard

Conformance 
Tests 

Specification

Implementing
Test Suite

Standardization Process 

Development & Certification Process

Requirements Design Operation

Fig. 1. Classic Standardization and Product Development Processes

Figure 1 shows a classical standardization and certification scenario divided
into two processes. The first (upper) process shows a view on the development
of a new version of a standard. The second process shows a classical waterfall
model for applications where the certification is part of the testing phase. Note,
both process views are very coarse overviews and do not provide a detailed look
at a certain complex standardization or certification scenario.

The standardization typically begins with a collection of requirements by a
standardization organization. For these requirements, a communication standard
is developed. Usually, the communication standard only describes the communi-
cation of a particular layer of the ISO/OSI communication stack. When a new
version of the standard is completed, the standard is published. After publishing,
conformance tests may be specified and test suites may be implemented. E.g.
The OPC Foundation offers a conformance test suite for its members [14]. The
development and certification of actual applications and components starts after
the publishing of the standard. Applications and components may be designed
after a requirement phase. Afterward, the implementation of standard commu-
nication interfaces starts. In order to claim conformance to the standard, new
applications and components may need to be tested according to the confor-
mance tests and get certified by an authorized certification body.

The important message of Figure 1 is that the development process can start
only after (a new version of) the standard has been published. If the software
development starts earlier, there is the risk that the resulting product is not
compatible with the new version of the standard. Waiting for the standard to be
published increases the time to market for interoperable software solutions that
use the communication standard. Thus, the whole process from the emergence
of the need for a new protocol to the availability of certified applications and
components may easily take several years. The reason is that classical standard-
ization processes rest on a linear software development model like the waterfall
or V model. As a result, new standard versions are not often published e.g., IEC
61850-1 is published in 2003 in version 1.0 and in 2013 in version 2.0. Therefore
agile development processes such as SCRUM, eXtreme Programming, or Kanban
are not supported by theses standardization processes.

Smart Energy Applications, as well as Industry 4.0, are connecting classical
industrial monitoring and control solutions with modern IoT-based technolo-
gies. Thereby modern software development processes are applied to address
fast-changing requirements in both sectors. To be innovative, the development



Caas 3

and deployment cycles have to be very short. This knowledge is based on our
experience with more than 15 different research and application projects in the
energy sector. Therefore we reconsidered how standardization and certification
processes can be integrated into an agile product development process.

This paper presents a new standardization and certification approach for
communication protocols. This approach primarily addresses the definition of
communication standards and the certification of software systems to prove their
compliance with such standards. In contrast to Figure 1, we focus here on the
certification part of the development process. In the following, we will use the
term standardization to describe the process to develop and publish a new stan-
dard, including the specification of conformance tests and the implementation
of test suites. The term certification is used to describe the relevant parts in the
development process of applications to test a new version of an application for
compliance to a standard and get a certification for this new version.

2 Related work

Agile standardization and certification processes have already been examined in
various domains. Examples are high security system certification for aviation[3]
and railways [1]. The authors of [3] present a way to certify security-critical
components in a transportation system. They focus on high-level certificates. To
provide the credibility of the certificates, the authors use a semi-formal descrip-
tion language. [1] shows a way to certify security-critical aerospace components.
The authors use UML as a modeling tool to provide an incrementally change-
able model description to achieve an agile certification process. However, the
solutions presented in both papers are very domain-specific and focused on se-
curity certification. The given solutions only fit into their use cases and can not
be used as a general approach. Furthermore, the solutions only cover the cer-
tification process in a client-side. Our solution want to cover the whole process
from developing a standard to certifying implementations of it.

An evolutionary standardization approach for file based data is presented
in [4]. The considered standardization focus is the engineering of automation
systems. The basic idea is to start from an existing proprietary file format of one
vendor and change it evolutionary to a neutral and later on to a common format,
apparently often XML in that context. Similar to our process, this approach
proposes a stepwise standardization. Nevertheless, the evolutionary approach is
not intended to support agile development processes in the development of tools.
In contrast to our approach, it focuses on file-based communication.

In [2] an agile standardization was performed for Process Control Equipment
(PCE). The domain is close to the considered domain of this work. The authors
require that standardization has to be done agile and ”should proceed stepwise”.
However, the focus of [2] is the concrete standardization of PCE Requests, not
the standardization process itself.

This paper presents a new process for standardization and certification of
communication standards. We tried to specify a very generic approach that



4 Sebastian Copei and Manuel Wickert∗ and Albert Zündorf

should be transferable to other domains as well. This is achieved through the
“Everything as a service” principle[5]. Furthermore, our solution is designed to
run easily in a public or private cloud, which allows very fast adaption.

3 The Agile Standardization and Certification Processes

Fig. 2. Agile Standardization Process

We propose an agile standardization and certification process that has two
interwined development cycles, cf. Figure 2. As in other agile approaches, stan-
dardization and certification should be performed in small increments. The basic
idea is to start with a minimal set of communication protocol features (e.g., es-
tablish a connection or login to a server) and add feature by feature in several
iterations. Every iteration ends with a minor version change in the standard. The
corresponding part of the overall standard is published e.g., via Github or some
other configuration management service. Based on the publication of the stan-
dard for some features, the standard conformance tests that certify compliance
with these features are extended or adapted and again published via a config-
uration management service. The standardization process runs iteratively, i.e.,
as soon as one feature has been completed, subsequent application development
may start while the standardization continues with the next features.

The product development cycle, including the certification of a product, is
shown on the right side of Figure 2. The development of standard-compliant
products may start with the requirements definitions for certain product fea-
tures. The implementation of these product features may follow this. As soon
as an implementation of some feature is available, this feature implementation
may try to pass the corresponding protocol conformance tests for a specific com-
munication standard version. As soon as the new product version is certified, it
may be released and operated in production.

Each time a new version of the standard is exposed, and the corresponding
conformance tests are deployed a test-driven development iteration of the prod-
ucts is ready to begin. Obviously, the conformance test will not be able to provide
a complete test set for a product. However, these tests will support the product



Caas 5

development relating to the communication interfaces. This approach has the ad-
vantage that first conformance tests will be available soon after the first iterations
of the standardization process have completed. Thus, product development and
standard development may be interwined. Thereby, standard-compliant prod-
ucts will be available soon after the standard has reached a sufficient level of
completeness. In addition, product development may provide feedback to the
standardization process. Product development may e.g., point to overly complex
conformance tests or inconvenient APIs or missing details, etc. This feedback
may be used by the standardization process to enhance the standardization of
the corresponding features and to come up with improved versions of the con-
formance tests. The importance of such feedback is also discussed in [4].

On the other hand, new versions of conformance tests that have already
been passed by some product may require to run these performance tests again
and perhaps to adapt already completed features to the new requirements. Such
changes to already defined conformance tests may also happen when follow-
ing features or later standardization iterations require previously standardized
features to evolve. This is an infrequent problem inherent in agile software devel-
opment. If a product development team wants to avoid such issues, it may wait
with its work until the standardization process has reached a sufficient level of
completeness and stability. One can argue that this may be a drawback of our
approach since stability is an important requirement for communication devices
in the field. However since we have also consider security for such field devices
we have to provide easy mechanisms to provide software updates in operation.
In addition there are a lot of regulatory changes in the energy sector that have
implications to the communication interfaces. Therefore adapting the communi-
cation interfaces very often will come to order within the next years.

4 Certification as a Service Architecture

For a certain standard, a certification service will support the agile standard-
ization and certification process. Here we propose a microservice [12, 7] based
certification as a service architecture. This architecture should support the un-
derstanding of our agile standardization and certification process on the one
hand. On the other hand, we built some basic prototypes based on this architec-
ture to evaluate the standardization. However, we will focus on the architecture
here because the implementation and evaluation of a certain standard are still
work in progress.

Continuous integration and continuous deployment are methods to support
fast feedback during agile development. A Certification as a service implemen-
tation extends a typical continuous deployment pipeline, as shown in Figure 3.
The certification step should be performed after the integration phase (which
includes integration testing). The certification step consists of the execution of
the conformance tests and the creation of a certificate. An implementation of our
certification as a service platform will perform this step. This allows the deploy-
ment of certified products in every continuous deployment cycle. If conformance



6 Sebastian Copei and Manuel Wickert∗ and Albert Zündorf

Repository Integration Certification DeploymentProduct
Sources

Conformance 
Tests Repository

Certification Body

Developer

Fig. 3. Continuous Certification Pipeline

tests fail, the pipeline stops at the certification step, just like a failure during
integration tests will stop the pipeline.

Each certification pipeline certifies a product according to a particular stan-
dard version. Whenever a new standard version is published, the respective con-
formance tests will be adapted or extended for the new version of the standard.
The certification bodies will add the standard to a repository. As soon as the
new tests have uploaded, a product can be certified for the new standard version.

The certification service itself should be hosted as a service by the standard-
ization or depending on organizational aspects, a certification body. As software
as a service (SaaS), it should be compatible with a typical build pipeline software
such as Jenkins. That allows an independent certification of products even with
fast development cycles.

Our proposal for the certification service architecture is shown in Figure 4.
We defined five microservices, two repositories, and an event broker.

Conformance Test 
Repository

Certification Service Architecture

Te
st

 S
er

vi
ce

C
er

tif
ic

at
io

n 
S

er
vi

ce

U
se

r M
an

ag
em

en
t

A
rte

fa
ct

 R
un

ne
r S

er
vi

ce

B
ill

in
g 

S
er

vi
ce

Event Broker

Artifact Repository

Fig. 4. Certification Service Architecture

The repositories are responsible for storing a product for certification (arti-
fact repository) and the conformance tests (conformance test repository). Both
artifacts and conformance tests should be available in different versions. To per-
form the conformance tests, an instance of the artifact should be up and running
for certification. The ”Artifact runner Service” is responsible for running this ar-
tifact and configure it correctly. The execution of the conformance tests will be
done by the ”Test Service”. This service will provide test results for the ”Certifi-
cation Service”. The certification service will create a certificate for the artifact if



Caas 7

all tests are passed successfully. The ”User Management” and ”Billing Service”
have administrative responsibilities. Since the business model of a certification
body is to issue certificates, it is necessary to implement user management and
billing functionalities. The communication to the product development should be
done by RESTful HTTP. RESTful HTTP is supported by typical build pipeline
products. For internal communication, event sourcing should be used. Therefore
we suggest making use of an event broker like Apache Kafka.

Our architecture aims to provide a proposal for a certification as a service
solution. Typical container orchestration tools can support implementations.
Therefore an implementation of our service should be cloud-native [15, 11, 6].

5 Conclusion and Future work

We presented a new way to achieve a more agile process during the standardiza-
tion and certification steps. We provide a certification as a service architecture
that should support the affected stakeholders during the whole process. This
means, on the one hand, that a standardization organization should have the
possibility to provide fast incremental updates of their standards. On the other
hand, we enable companies to use agile development processes for their certified
implementation of standardized communication interfaces.

The paper is part of our work in the European research project InterConnect
EU [10]. In the next steps, we will implement the certification as a service archi-
tecture for a new communication standard in the context of e-mobility. We will
examine how agile standardization approaches will work in that context. Fur-
thermore, we will evaluate how this approach will support the agile development
of prototypes for e-mobility use cases.

Acknowledgement

This work is part of the interconnect project [10] which has received funding
from the European Union’s Horizon 2020 research and innovation program under
grant agreement No 857237.

References

1. Sergio Bezzecchi, Paolo Crisafulli, Charlotte Pichot, and Burkhart Wolff.
Making agile development processes fit for v-style certification procedures.
CoRR, abs/1905.06604, 2019. URL: http://arxiv.org/abs/1905.06604,
http://arxiv.org/abs/1905.06604 arXiv:1905.06604.

2. P. G. Bigvand, R. Drath, A. Scholz, and A. Schüller. Agile standardization by
means of pce requests. In 2015 IEEE 20th Conference on Emerging Technologies
Factory Automation (ETFA), pages 1–8, 2015.



8 Sebastian Copei and Manuel Wickert∗ and Albert Zündorf

3. David J Coe and Jeffrey H Kulick. A model-based agile process for do-178c certi-
fication. In Proceedings of the International Conference on Software Engineering
Research and Practice (SERP), page 1. The Steering Committee of The World
Congress in Computer Science, Computer . . . , 2013.

4. R. Drath and M. Barth. Concept for managing multiple semantics with automa-
tionml — maturity level concept of semantic standardization. In Proceedings of
2012 IEEE 17th International Conference on Emerging Technologies Factory Au-
tomation (ETFA 2012), pages 1–8, 2012.

5. Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu. Everything as a
service (xaas) on the cloud: Origins, current and future trends. In 2015 IEEE
8th International Conference on Cloud Computing, pages 621–628, June 2015.
http://dx.doi.org/10.1109/CLOUD.2015.88 doi:10.1109/CLOUD.2015.88.

6. C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud Comput-
ing Patterns. Springer Vienna, Vienna, 2014.

7. Martin Fowler and James Lewis. Microservices. 2014. URL: http://

martinfowler.com/articles/microservices.html.
8. IEC 60870-5-104 - Telecontrol equipment and systems. Standard, International

Electrotechnical Commission, Geneva, CH, 2006.
9. IEC 61850 Standard Series, Communication networks and systems in substations.

Standard, International Electrotechnical Commission, Geneva, CH, 2020.
10. Interconnect project - homepage. Last viewed 20.04.2020. URL: https://

interconnectproject.eu/.
11. Nane Kratzke. A brief history of cloud application architectures. Applied Sciences,

8, 08 2018. http://dx.doi.org/10.3390/app8081368 doi:10.3390/app8081368.
12. Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.
13. OPC Unified Architecture, IEC 62541, Standard Series. Standard, OPC Founda-

tion, International Electrotechnical Commission, Scottsdale, USA, 2008.
14. Opc foundation test tools. Last viewed 20.04.2020. URL: https:

//opcfoundation.org/developer-tools/certification-test-tools/

opc-ua-compliance-test-tool-uactt.
15. Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. Architectural principles

for cloud software. ACM Transactions on Internet Technology, 18, 06 2017.
http://dx.doi.org/10.1145/3104028 doi:10.1145/3104028.


