Teaching Complex Systems based on
Microservices

Renato Cordeiro!, Thatiane Rosa!?, Alfredo Goldman®, and Eduardo Guerra?

! University of Sao Paulo, Sao Paulo, SP, Brazil
{renatocf, thatiane, gold}@ime.usp.br
2 Federal Institute of Tocantins, Paraiso do Tocantins, TO, Brazil
3 Free University of Bozen-Bolzano, Bolzano, Italy
guerraem@gmail.com

Abstract. Developing complex systems using microservices is a current
challenge. In this paper we present our experience with teaching this
subject for more than 80 students at the University of Sdo Paulo (USP),
fostering team work and simulating the industry’s environment. We show
it is possible to teach such advanced concepts for senior undergraduate
students of Computer Science and related fields.

Keywords: Complex Systems - Microservices - Computing Education.

1 Introduction

The interest of industry and academia for the microservices architectural style
increases yearly. However, its adoption is non-trivial and has many challenges.
The teaching-learning process on this subject should cover relevant technical
and theoretical contents. It is important to think how universities can prepare
students to develop complex systems using microservices. Ideally, it should be
interesting, motivating, and offer an experience close to the industry.

This paper presents our approach for teaching the development of complex
systems based on microservices, as applied in the course “Laboratory of Complex
Computational Systems” at the University of Sao Paulo (USP). Since 2018, it
was offered four times as a two-week extension course with 65 students in total.
In 2020, it was offered as a semester-long course with 18 students.

Our main inspiration for this course was the XP Laboratory course [2], also
offered at USP. Another perspective for teaching microservices was proposed
by Lange et al. [3], where students explored the subject conceptually and then
focused on strangling a monolithic application.

2 About the Course

Our teaching method has three pillars: theoretical, technological and practi-
cal. The first includes lectures about complex systems, microservices and agile
methodologies. The second is made of talks about front-end and back-end Web
development. The third is focused on the implementation of an application based
on microservices.

2 Renato Cordeiro et al.

In the course, lectures are given by researchers and industry professionals.
Students are organized into teams (4-6 members) and have to develop different
domains of the system. Our assessment is continuous and incremental. The final
grade is calculated based on presence and active participation in class, overtime
attendance during development sprints (four extra hours per week), and the
fulfillment of simple tests and exercise lists. The course also includes regular
warm-up activities to foster team building and to illustrate concepts learned.

During the project development, we adopted agile practices such as peer code
review, pair programming, daily meetings, and sprint and class retrospectives. To
promote knowledge sharing and remote teamwork, we used Discord and GitLab.

The total course duration was 120 hours (75 theoretical and 45 practical).
For a more detailed summary of the structure of the course, please access:
https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=MAC0475.

3 Course Project

As the course project, we proposed that the students build HACKNIZER: a plat-
form to organize and host hackathons. Some of the desired features were: user
access control, hackathon creation and edition, sponsor and award registration,
hackathon web page customization, participant registration, team composition,
project submission, and winning project choice.

The 18 students were organized into four teams, composed of 4-5 members,
with different levels of knowledge and interests. We also divided HACKNIZER
into four bounded contexts: team management (blue). hackathon management
(green), user management (red), and web page customization (yellow). [Figure 1
presents an entity-relationship model that illustrates the domain of the system.

We designed HACKNIZER according to a reactive microservices architectural
style [1] and adopted many microservices patterns, such as Service per Team, API
Gateway, Microservice Chassis, Single Database per Service, Event Sourcing,
CQRS, and Saga. presents an architecture overview of the system.

|||

composed by

B |

1
1
articipate = PAGE — —
1
PARTICIPANT
_______ API| > ¢ <l <

| —>» HTTP Request - » Event Production |

A »
Main |3 P
== | %P e
]) B e <l i
REGISTERED $ K
____________________ E |\YaPI ’[]‘ <() ("'E
Event _)W >
, win Site A
Rl &} Y
<< Pl
. I R B T L

Fig. 1. Entity—Relationship Model Fig. 2. Architecture

https://web.archive.org/web/20200524194039/https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=MAC0475

Teaching Complex Systems based on Microservices 3

4 Lessons Learned

To evaluate the learning process, we surveyed our current 18 students to collect
their self-assessed level of knowledge in 18 skills the course focuses on. Our
results describe five different moments: before the course, after the first lecture
block, after the first sprint (both focused on theory and Web front-end), after
the second lecture block, and after the second sprint (both focused on Web back-
end). [Figure 3| shows a heatmap summarizing the students’ answers for the 18
skills and illustrates their evolution throughout the course.

Regarding the microservices architectural style and its patterns, students
with low level of knowledge before the course (1, 4-5, 9, 12-13 and 15) managed
to evolve as the course progressed. On the other hand, students who had a high
level of knowledge about the subject (3, 6 and 14) maintained this level.

Microservices Methodologies Versionlng
ID Architecture Patterns Modeling XP Scrum Kanban DevOps Git GitLab
H: «Bl+«f{: B8 34+ :3Bl«@ 3 2 -4 434 -H2:3:%4 -4 3 2 4444 -BlaEls -E
22334 2233333433 333-3333-2323323-32343-4444-42343-4
4fBl4 a8l 4[4 4Bl 4Bl4 4 4 434 - 4 434 -4 434 -4 444 -4 4Bl4 -4 444 -4
I3334I333433334.33-4.33»4.33-4.33 3333 -/4/333 -4
3344133343333 322-3132-3232-3022-3233-3233-3
[4 4 4 4 4 44 4 4 4 44444 343 -3 343 -3 343 -3 343 -4444-4434 -4
(Ml 24333 2234323333 8 2-:3 0 2-22343-24334 -4 |EEEE-EEEE -
N 3444434444 44444333 -Bl3zz - -B323-.4 @333 -flassa -
l2344l234422344--.--.--.- 5555 -5555 -
(0 33 444 23333 34434233 -3334-42334-23233-3334-4223-3
[El 2 3 334 23343 4414243 -3 33-3 33 -3 33 -3323-3323-2
I2233.2233.2223.2.-2.2.-2.2.-2.22 sH: - s - 2
(Ml 2 3 3fl2 23323333222 -3/222-3/233-4/222-3333-32333-3
(0 4 4 4 4 4 43 4 44 34444333 -3333-4BlaBl-4333-3244B-Bls4s4 -2
[Ol2 :4 23043 334442304 -4213 3 -423 3 -4fll23 -3 334 -4 334 -4
13333333333 33433 333-3444-3444-4333-4444-4333-4
334342344432343434-4434-4434-4“2 3 434 -4 333 -3
02333 3Ml2233 33334 333-4444-42444-4 8- B:H: B33 -3
Web Front-End Web Back-End

D HTML Css Js VueJS NodeJS Express Docker Mongo NATS
434 -4 43 4 4 4 4 4 - 4 33 -42--424 - - 4B - - 2 4 - sHE - - “8
333-3333-3233-3'22-3.»»33 --3380- - B2 - -3:3@l- -22
434 -4/a34 -4223-3122 -3 2--330--333--3423--430-.23
i el LB SRR | B H EEET EEEE] EEEE
344 -4334-4233-3032-32--330--330--332--33[2--32
[P 333 -/al333 -[@[2202]-3/22/3 -[42- -[AEl- -4Es - -@@2- -9l - -4
7 B Y H:2- -+8- - I 3--342--440--224
8 -B -3 -Iz 3 - 4 s o - - - -BEIE - -El: - -2
9 3 - | 3 - 4 2l - B 3 - 4 - -3 34 - 3 - -EEE- -BEs - -4 s
[l 444 -4 334 -4233-3 133 -afl--33M--332--343--44H--32
[l 334 -4333 -3jflc s -W@sz 3 -42- -@4@- -“49@- -:@ - -23@ - -2
k1233 - sffl2 3 - 3 3Bl - B 2-2I--32I--2.I- 22I--2.I--2I
[l 233 -'4222 -2 23 - 4123 - 3l- - 33 l- -342--33l--440--1424
14 [0 I R R -H343 -3 - -BBl s - -4 4B- -B08lz - - 44 e
3304 -/433/4-333/@-@22%-30--33H --33W--432--33 - -33
E4.4-44.4-44.4-44.4-42--23.--332--zzz--az - -1
333 -3223-3333-4333-43--34/2--332--443--33M-.32
444 -14444 -143/a4 -43/43 -43--/4933--333--43H0--32 - -2

Fig.3. Heatmap with students’ self-assessed level of knowledge in 18 skills
the course aims to improve. Each answer follows a Likert scale ranged 1-5, where
1 means “very low” and 5 means “very high”. Each topic has answers about up to
five moments: before the course, after the first lecture block, after the first sprint
(both focused on theory and Web front-end), after the second lecture block, and after
the second sprint (both focused on Web back-end). Dashes in the column represent a
moment when the students were not asked about this subject.

4 Renato Cordeiro et al.

With respect to agile methodologies, students who had attended the XP
Laboratory course had a greater background about these subjects. During our
course, they either kept or evolved their level of knowledge. Notwithstanding, all
students with no previous experience in agility advanced their knowledge.

Regarding versioning, students who are not enrolled in the Bachelor’s degree
in Computer Science (5, 10 and 12) had a low level of knowledge in this subject
before the course.

With respect to front-end technologies, most students had experience with
the basic stack: HTML, CSS and JavaScript. The most unfamiliar tool was
VuelJS, a modern single-page application framework. Despite the challenges, even
students with very low level of knowledge (9, 11 and 13) could get a good un-
derstading of how to develop with it.

Regarding back-end technologies, students who had little experience with
Docker (1, 4-5, 8, 10-13 and 15-17) advanced their knowledge. Two thirds of
the students had low level of knowledge about NodeJS and Express, but they
assessed that they progressed to medium or high level of knowledge by the end
of the course. Lastly, very few students knew how to use MongoDB or NATS. In
the last survey, most of them had a good advance with the former but the same
did not happen uniformly with the latter.

Besides the surveys, we made a non-structured interview with the students to
ask eight questions covering their backgrounds, difficulties on each of pillar of our
teaching method (theoretical, technological, practical), and general impressions.

Overall, the course is meeting the students’ initial expectations. The biggest
challenges reported include: team work, which is not commonly applied in other
courses; and remote collaboration, since no single tool worked seamlessly for all
students in all environments. The main knowledge gains include: team work,
because they felt they were learning how to develop together and were enjoying
the collaborative discussions that came from it; and an environment similar to
the industry’s, since they reported our course was the closest to the challenges
they expect to deal with in a full-time job, in particular the use of microservices.

Acknowledgment

We want to thank our partner Joao Francisco Lino Daniel who helped to plan and
develop the course offerings described in this paper. We also thank Alceste Scalas,
Filipe Correia, and Rebecca Wirfs-Brock for the suggestions for improving this
extended abstract.

References

1. Bonér, J.: Reactive Microservices Architecture: Design Principles for Distributed
Systems (2016)

2. Goldman, A., Santos, V.A.: Continuous improvement of an xp laboratory course:
An 18 year history. In: 2019 Agile Conference (2019)

3. Lange, M., Koschel, A., Hausotter, A.: Microservices in higher education. Interna-
tional Conference on Microservices (2019)

	 Teaching Complex Systems based on Microservices -5mm

