
Multicloud API binding generation from
documentation

Michał J. Gajda1, Vitor Vitali Barrozzi1, and Gabriel Araujo1

Migamake Pte Ltd
migamake@migamake.com

1 Introduction

We propose a solution for low-level integration cloud service integration among
different providers without additional support from the cloud API vendor.

Multicloud service orchestration allows leveraging the full power of special-
ized, scalable best-of-a-kind services in the cloud. Its advent coincides with the
so-called no-code and low-code solutions that enable rapid prototyping of cloud
applications by small teams of startup companies. While excellent in theory, but
in practice SDKs usually address only a few programming languages, descrip-
tions are untyped and incomplete, API description languages like Swagger/Ope-
nAPI[20] are rarely used. That means that initial implementation is often an
incoherent mix of incompatible scripts, deployment is only partly automated,
and the source code uses a variety of platforms with varying level of automa-
tion.

An attempt to integrate these stumbles upon the barrier of cloud APIs doc-
umented in many different ways, usually ad-hoc and without particular rigour.
The API interface bindings often contain implicit assumptions, untyped JSON
or text-based bindings.

We solve this significant and essential interoperability problem by automat-
ically parsing API documentation, and then generating API bindings in any
chosen programming language1. The additional efforts to support cloud API
bindings by code generation are limited to single API and single language[1, 5,
11], or require a significant effort of handwriting Swagger/OpenAPI declarations
for entire API[30], if the vendor did not generate them.

2 Implementation

Our solution (HurlAPI), is a data pipeline, divided into three different stages:
(I) data gathering from the web pages (II) parsing and analysis (III) code gen-
eration.
1 We currently generate Haskell[12] code, but developing generation to any other typed

language is offered as a paid service upon request.



2 Michał J. Gajda, Vitor Vitali Barrozzi, and Gabriel Araujo

Data gathering Parsing Code generation

URLs parser
JSON

inference
type

Autotype
JSON

declarations
type
result
and

Argument

package
library
Target

Crawlers descriptions
Parameter

types
Parameter

Extractors
parser
request
HTTP

function
call

HTTP

module
source
Typed

CSV
parser

example
Use

type
request
HTTP

Fig. 1: Data flow within the API binding code generation pipeline.

Data gathering At the initial stage of data gathering, we gain a complete
description of each cloud API call with Scrapy library[24] using Python. It allows
us to download HTML pages with Chrome, then we examine page structure with
XPath[6], CSS[25], or JQ[14] selectors to extract data in a systematic manner.
All this information is written into tabular CSV files[26], with some columns
containing JSON objects, and carefully validated.

Data analysis As part of a data analysis stage implemented in Haskell[12], we
parse many possible formats: (a) HTTP request path description with variables
(b) cURL command options (3) extracts from tables of parameter descriptions.
The parameter descriptions are tagged with the parameter passing convention2:
(I) as part of an HTTP request path (II) URL-encoded query parameter (3) part
of a request body as JSON or plain text[10] (4) HTTP header or a cookie. The
content of parsed entries is carefully validated and cross-checked for possible
inconsistencies. Every entry has a separate list of errors, that are reported per-
record. While we only allow 100% correct records to be used for code generation,
the failed records are reported in detail. Summary statistics of erroneous records
2 Cloud API call parameter passing conventions differ from binary function call con-

ventions in this respect, and many different argument passing convention may be
assigned for different parameters of the same call.



Multicloud binding generation 3

reports on a validation dashboard that indicates percentage correctness of current
data and allows us to assess the overall health of data pipeline[9].

Agile data pipeline principles Data analytics pipeline goes beyond previously
described best practices in agile data science[16] and also draws from BCBS 239
best practices for risk management in the financial industry[4].

The principles of our data pipeline development process are (1) judge by a
final impact – prioritize development of an entire pipeline to judge issues by
their impact on a final product using data processing dashboard; it allows us
to focus our efforts on few issues that have a significant impact on final data3

(2) record never disappears – trace flow of records over the entire data pipeline
with unique record identifers4; when filtering out records, put them to alternate
output, so you can examine impact of each filter (3) error is a tag or an alternate
output – assign error as one of many tags of the record, and then filter by sorting
error records to an alternative output that requires similar examination as final
product; multiple errors and warnings are attached to each record that elucidate
co-occurrence of data quality and handling issues (4) late filtering – delay filtering
when you have multiple data quality criteria that can be run in parallel on a
single record; this makes it easy to examine issue co-occurrence that is common
for faulty data (5) universal data formats – data at any stage of the pipeline
is available for examination as CSV files (6) gradual record enrichment with
additional information, so we can examine all data related to the record in a
single row; preserve of existing information, so inputs and outputs can be quickly
examined at any stage of processing (7) an iteration throughput is considered as
important as an iteration speed, since number of successfully processed records
increases a number of issues discovered during each iteration, and we try to make
the processing of different records and categories as independently as possible
(8) tagging potential gaps with errors or warnings, instead of assuming total
correctness of the input data and the processing pipeline; this facilitates data-
based assessments of completeness of the analysis (9) use excerpts from real data
as unit tests whenever possible to avoid testing for issues rarely or never occur
in practice.5

The principles (1), (7-9) are all guided by Zeno’s principle[13] of extensive
data processing, where sorting data quality and processing issues by the final
impact on the final product will show that most of the issues occur in a relatively
small number of records. Fixing the first issues gives big improvements, but
getting to 100% accuracy needs much more work. We can easily observe that
moving from 80% to 90% of correctly processed records takes about the same
time as moving from 98% to 99%. Still, the gain in the former case is more

3 Only in the absence of more precise goals, the primary measure of impact is a
frequency of an issue.

4 In case records are merged, we also merge the identifiers.
5 It also allows for principled treatment of the potential problems for which we do

not have any practical test examples. We firmly anchor our analysis in naturally
occurring data.



4 Michał J. Gajda, Vitor Vitali Barrozzi, and Gabriel Araujo

substantial.6 The principles (3-5) aim to increase iteration throughput in terms
of simultaneously detected data quality and processing issues.

Code generation As the final stage, we generate code in a typed programming
language. We start with a reference data structure that lists necessary functions
and type declarations. This part is language-independent except for function
generating the language-dependent declaration identifiers themselves. The bind-
ing generation proceeds with templates that use these identifiers to generate full
code modules, and then entire API binding package along with its metadata;
we use techniques described in [2, 8, 15, 18]. Following the best current practice,
we also attach links to the original documentation website, which allows user to
cross-reference the information with the original API documentation.

3 Conclusion

Limitations When proposing a code generation solution instead of handwritten
code, it is important to consider limitations compared to manual processes. For
a few APIs, we need to implement specialized components like AWS S3 chun-
ked signatures[27], custom authentication rolled out for TransferWise API[29].7
There are also few (less than 2% in entire MS Graph API[19]) of API calls
that use custom argument passing. For example, MS Graph uses custom DSL
for filtering by customizable extended properties[22]. Another example is non-
standard retry behaviour of Backblaze API[3], that requires to replace the access
token upon receiving 503 response (service unavailable). There are also some-
times bugs in the documentation, which will cause the generation of incorrect
code. Some companies provide only language-specific SDKs[28], instead of pub-
licly documenting their REST interfaces. Luckily the situation improves with
bigger companies even providing live debugging or live sandbox functionality for
the REST interface[7, 17, 21].

Summary We implemented the retargetable code generator for cloud API bind-
ings that presents the following benefits: (1) provide a binding for thousands of
API calls within months; (2) language retargeting with little effort; (3) the sys-
tematic approach allows easy scaling to a number APIs; (4) removes a depen-
dency on the cloud API provider support; (5) it significantly reduces maintained
code base as compared with handwritten cloud API bindings. We offer to gener-
ate cloud API bindings for other programming languages and other cloud APIs
as a paid service.
6 Which is kind of inverse Pareto[23] principle in data analytics. We can call it Zeno’s

principle after the behaviour of the turtle in the Zeno’s paradox[13], since we move
in smaller steps the closer we are to the complete correctness.

7 We agree with TransferWise[29], that this is more secure than using plain secret like
an access token, but each new authentication method needs special support code.



Multicloud binding generation 5

Bibliography

[1] Amazonka – A comprehensive Amazon Web Services SDK for Haskell: 2013.
https://github.com/brendanhay/amazonka.

[2] Art of industrial code generation: https://www.migamake.com/presi/art-of-
industrial-code-generation-mar-6-2019-uog-singapore.pdf.

[3] B2 Integration Checklist, Uploading files: https://www.backblaze.com/b2/
docs/integration_checklist.html.

[4] Basel Committee on Banking Supervision 2013. BCBS 239: Principles for
effective risk aggregation and risk reporting.

[5] Boto 3 - The AWS SDK for Python, release 1.12.9: 2020. https://github.com/
boto/boto3.

[6] Clark, J. and (eds.), S.D. 1999. XML path language (XPath) version 1.0.
W3C.

[7] Full API Reference, Simulation: https://api-docs.transferwise.com/#simulation.
[8] Gajda, M.J. Do not give us a bad name. Work in progress.
[9] Gajda, M.J. Guidelines for agile data pipelines. Work in progress; Migamake

Pte Ltd.
[10] Gajda, M.J. Towards a more perfect union type. 10.5281/zenodo.3929473.
[11] Gogol – A comprehensive Google Services SDK for Haskell: 2015. https:

//github.com/brendanhay/gogol.
[12] Haskell 2010 Language Report: https://www.haskell.org/definition/haskell2010.

pdf.
[13] Huggett, N. 2019. Zeno’s Paradoxes. The Stanford Encyclopedia of Phi-

losophy. Edward N. Zalta, ed. https://plato.stanford.edu/archives/win2019/
entries/paradox-zeno/; Metaphysics Research Lab, Stanford University.

[14] jq is a lightweight and flexible command-line JSON processor: 2012. https:
//stedolan.github.io/jq/manual/.

[15] JSON Autotype: Presentation for Haskell.SG: 2015. https://engineers.sg/
video/json-autotype-1-0-haskell-sg--429.

[16] Jurney, R. 2017. Agile data science 2.0: Building full-stack data analytics
applications with spark. O’Reilly Media, Inc.

[17] Mailgun Sandbox Domain Explained: 2020. https://blog.mailtrap.io/mailgun-
sandbox-tutorial/.

[18] Michal J. Gajda, D.K. 2020. Fast XML/HTML tools for Haskell: XML
Typelift and improved Xeno. Manuscript in review, 10.5281/zenodo.3929548.

[19] Microsoft Graph REST API v1.0 reference: https://docs.microsoft.com/en-
us/graph/api/resources/domain?view=graph-rest-1.0.

[20] OpenAPI 3.0.2 Specification: 2018. https://swagger.io/docs/specification/
about/.

[21] OpenAPI Explorer: https://api.alibabacloud.com/.
[22] Outlook extended properties overview: 2020. https://docs.microsoft.com/

en-us/graph/api/resources/extended-properties-overview?view=graph-rest-1.
0.

[23] Pareto, V. 1896. Cours d’Economie politique. Droz.
[24] Scrapy: https://scrapy.org/.

https://github.com/brendanhay/amazonka
https://www.migamake.com/presi/art-of-industrial-code-generation-mar-6-2019-uog-singapore.pdf
https://www.migamake.com/presi/art-of-industrial-code-generation-mar-6-2019-uog-singapore.pdf
https://www.backblaze.com/b2/docs/integration_checklist.html
https://www.backblaze.com/b2/docs/integration_checklist.html
https://github.com/boto/boto3
https://github.com/boto/boto3
https://api-docs.transferwise.com/#simulation
https://github.com/brendanhay/gogol
https://github.com/brendanhay/gogol
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
https://plato.stanford.edu/archives/win2019/entries/paradox-zeno/
https://plato.stanford.edu/archives/win2019/entries/paradox-zeno/
https://stedolan.github.io/jq/manual/
https://stedolan.github.io/jq/manual/
https://engineers.sg/video/json-autotype-1-0-haskell-sg--429
https://engineers.sg/video/json-autotype-1-0-haskell-sg--429
https://blog.mailtrap.io/mailgun-sandbox-tutorial/
https://blog.mailtrap.io/mailgun-sandbox-tutorial/
https://docs.microsoft.com/en-us/graph/api/resources/domain?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/domain?view=graph-rest-1.0
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://api.alibabacloud.com/
https://docs.microsoft.com/en-us/graph/api/resources/extended-properties-overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/extended-properties-overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/extended-properties-overview?view=graph-rest-1.0
https://scrapy.org/


6 Michał J. Gajda, Vitor Vitali Barrozzi, and Gabriel Araujo

[25] Selectors Level 3: 2011. https://www.w3.org/TR/2011/REC-css3-selectors-
20110929/.

[26] Shafranovich, Y. 2005. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180; RFC Editor.

[27] Signature Calculations for the Authorization Header: Transferring Payload
in Multiple Chunks (Chunked Upload) (AWS Signature Version 4): 2016.
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-streaming.html#
sigv4-chunked-body-definition.

[28] SmartFoxServer 2X documentation central: 2020. http://docs2x.smartfoxserver.
com/.

[29] Strong customer authentication: 2020. https://api-docs.transferwise.com/
#payouts-guide-api-access.

[30] SwaggerHub: https://swagger.io/tools/swaggerhub/.

https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-streaming.html#sigv4-chunked-body-definition
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-streaming.html#sigv4-chunked-body-definition
http://docs2x.smartfoxserver.com/
http://docs2x.smartfoxserver.com/
https://api-docs.transferwise.com/#payouts-guide-api-access
https://api-docs.transferwise.com/#payouts-guide-api-access
https://swagger.io/tools/swaggerhub/

	Multicloud API binding generation from documentation

