
Towards Integrating Blockchains with
Microservice Architecture Using

Model-Driven Engineering

Simon Trebbau1, Philip Wizenty1[0000−0002−3588−5174], and Sabine Sachweh1

IDiAL Institute, University of Applied Sciences and Arts Dortmund,
Otto-Hahn-Straße 27, 44227 Dortmund, Germany

{simon.trebbau,philip.wizenty,sabine.sachweh}@fh-dortmund.de

Abstract Blockchain presents a feasible method to persist immutable
information in a distributed ledger to improve the level of authentication
and trust. Moreover, smart contracts enable the automated execution of
any contract concluded between participants of the Blockchain network.
On the other hand, Microservice Architecture (MSA) is a novel approach
towards service-based scalable applications. In our paper, we present an
approach based on Model-Driven Engineering (MDE) that aims to facil-
itate the integration process of Blockchains into MSA-based applications
in order to benefit from the advantages attributed to Blockchains.

Keywords: Microservice Architecture · Model-Driven Engineering ·
Code Generation · Distributed Ledger · Blockchain · Smart Contract.

1 Introduction

Blockchain constitutes a technology for information exchange and transactions
that require a specific level of authentication and trust [17]. Additionally, a
blockchain reduces the risk of data manipulation, system failure, and dependency
at a single system component [9]. In recent years, blockchains emerged as an
important and influential technology for businesses and society [9].

Moreover, modern blockchain technologies like Ethereum1 also supports the
usage of smart contracts [17]. Smart contracts act as autonomous agents in the
blockchain network and contain program code that executes by a specific message
from a user’s transaction or another smart contract. Typical use cases for smart
contracts are financial payments or contractual agreements.

Microservices Architecture (MSA), in which services are used as autonomously
software building blocks, shares several similarities with the concept of smart
smart contracts [16]. Both provide their functionalities over a specific interface.
Also, they manage their own data and have an isolated deployment environ-
ment, e.g., a Kubernetes2 pod or an Ethereum Virtual Machine (EVM). MSA
as well as smart contracts represent complex distributed systems. Furthermore,

1https://ethereum.org/
2https://kubernetes.io/



2 S. Trebbau et al.

smart contracts can provide similar functionalities similarly to microservices,
e.g., individual data storage and API [4]. Therefore, they can be used in a MSA
application to increase authentication and trust [17].

This paper introduces an Model-Driven Engineering [2] (MDE)-based ap-
proach to ease the integration of blockchain technology into MSA-based appli-
cations. By using models as first class citizens in the development process, we
abstract from implementation details to reduce the overall complexity. Addition-
ally, the presented approach includes the usage of code generators to support the
development process and increase code quality.

The remainder of this paper is structured as follows. Section 2 gives a brief
introduction to blockchain technology and MDE of MSA. Section 3 introduces
our MDE-based approach for the integration of blockchain technology into MSA.
We validate the approach in Section 4. Section 5 provides related work. This
paper concludes and outlines future work in Section 6.

2 Background

Blockchain. A blockchain is a shared digital and distributed ledger [10], which
stores transaction data on multiple network nodes without a central party and
according to an agreed policy. The involved nodes connect directly over a peer-to-
peer network. Executed transactions are combined into blocks, which are linked
together using cryptographic hash values [8]. For contributing a transaction to
the blockchain, it is necessary to build consensus among all participants. The
consensus is formed via a consensus algorithm [17] that synchronizes the dis-
tributed ledger on the different participant nodes.

Generally, a smart contract is an automated transaction protocol, which ex-
ecutes the terms of a contract [17]. Therefore, a smart contract represents a
fragment of source code that could be executed automatically on a dedicated
environment on the blockchain and perform various functionalities, e.g., a finan-
cial transaction or report at the end of an electric vehicle charging process.

Model-Driven Engineering of Microservice Architecture. A well researched ap-
proach to enable MDE for MSA is the Language Ecosystem for Modeling Mi-
croservice Architecture3 (LEMMA) [11]. LEMMA provides a set of modeling
languages and model transformations that are built using the Eclipse Modeling
Framework (EMF) [15]. LEMMA utilizes methods and techniques from MDE to
reduce the complexity of MSA engineering for various stakeholder groups, e.g.,
domain experts and microservice developers. The modeling languages provide
the possibility to create models as an artifact in the software engineering process
for enabling code generation and reasoning about microservice architectures.

LEMMA’s Domain Data Modeling Languages (DDML) [13] enables the mod-
eling of domain concepts and addresses the domain viewpoint on microservice

3https://github.com/SeelabFhdo/lemma



Integrating Blockchain with MSA Using MDE. 3

architectures. DDML is used by domain experts and service developers to cap-
ture domain concepts in models and supports Domain-Driven Design (DDD) [5]
patterns such as Entity, Aggregate, and Repository.

The Technology Modeling Language (TML) [13] provides a means for ser-
vice operators and developers to construct models targeting technology-specific
information for service implementation and operation. Therefore, TML allows
capturing and modularization of information regarding programming languages,
frameworks, and deployment technologies. Additionally, technology aspects [11]
are supported as a concept for the integration of technology-specific metadata,
e.g., database mappings or microservice interaction configuration, into the mod-
els.

LEMMA’s Service Modeling Language (SML) [13] focuses on the service
viewpoint on MSA. SML enables service developers to construct models for
specifying the API of a microservice. In detail, the SML allows to specify in-
terfaces including their data structure as well as interface dependencies on other
microservices. To this end, SML models are able to import previously defined
DDML models as well as other SML models.

The Operation Modeling Language (OML) [13] of LEMMA addresses the
operation viewpoint on MSA and is used by service operators. OML encapsu-
lates concepts for service deployment, e.g., deployment technologies, operation
environments, service-specific configurations, and dependencies to infrastructure
components.

In addition to the modeling languages, LEMMA also provides means to pro-
cessing resulting models. Firstly, LEMMA contains intermediate metamodels and
intermediate model transformations [7] to facilitate the processing of the con-
structed models. Based on these intermediate models, LEMMA includes a Model
Processing Framework to ease the development of model processors like code
generators, model analyzers, and model visualization.

3 A Model-Based Approach to Integrate Blockchain with
Microservice Architecture

Our approach focuses on the research context of supporting the integration pro-
cess of blockchain technology for MSA. For this purpose, we use MDE to abstract
from implementation details to reduce the overall complexity by using microser-
vice architecture viewpoint-specific modeling languages. Precisely, our approach
provides the functionalities to realize the integration process of blockchain tech-
nology utilizing LEMMA’s modeling languages.

With a view to MSA and blockchains as well as their potentially combi-
nation, some challenges arise. A specific challenge in MSA is the deployment
and operation of the microservices [1], which also applies to blockchain because
of their similarities. Furthermore, the handling of smart contracts also can be
a challenging process because they need to be integrated into the application
and blockchain [3]. Based on these challenges, the question is how can MDE be



4 S. Trebbau et al.

used in suitable places to abstract frequently occurring and possibly complex
processes.

LEMMA-Based Integration of Blockchain Functionality into Microservice Ar-
chitecture. Our approach uses LEMMA’s modeling languages (cf. Sect. 2) to
abstract from implementation details in MSA development to support the devel-
opment process. Moreover, we use code generators to generate multiple artifacts,
e.g., Java classes and configuration files. The presented approach focuses on the
generation of blockchain-related artifacts like implementing the connection to
the blockchain network. Figure 1 depicts our approach and the relation between
the different LEMMA models, the code generators, and generated artifacts.

Figure 1. LEMMA-based approach for integration of blockchain functionality into
MSA.

The presented approach divides into three consecutive stages. Stage 1 com-
prises an agile modeling process by the stakeholder groups of MSA engineering.
They collaborate to construct the models, which describe the MSA [11]. This
approach considers all groups and their models, but with an increased focus on
the models dealing with blockchain aspects of the application. It includes the
Domain Model for data structures, the Service Model for configuration aspects
or API definitions, the Operation Model for blockchain connectivity property
initialization, and a Technology Model that defines Ethereum specific aspects
like network properties.



Integrating Blockchain with MSA Using MDE. 5

Stage 2 utilizes the created models from Stage 1 as an input for the model
processing. The Java Base Generator and Web3j Genlet use the Domain and
Service Model to generate Java source code. Genlets are code generation mod-
ules introduced by LEMMA to generate individual source code for passed domain
model and service model [12]. Additionally, the Ethereum Generator utilizes
the Operation Model to derive blockchain service configuration properties for
establishing the connection to a blockchain. Both the Web3j Genlet and the
Ethereum Generator represent defined extensions of the LEMMA framework,
which also could be extended by additional generation functions in the further
if necessary.

Stage 3 shows the code generators created artifacts for the development pro-
cess of the MSA application. The Blockchain Configuration configures com-
munication with the blockchain network using the Web3j4 library. It is generated
as a separate artifact by the Web3j Genlet. It includes predefined java methods
for connection establishment, transaction management, and adjustable methods
for deployment and loading of smart contracts. Additionally, the Microservice
Interfaces and Data Structures are generated based on the Domain Model
and Service model to support the development process. The Microservice
Interfaces can be used to trigger a smart contract by using the methods
provided via the blockchain configuration artifact. Moreover, to enable the de-
ployment process of the microservice in association with blockchain, the Ethe-
reum Generator creates service-specific Blockchain Connection Properties
for connecting the microservice to the blockchain.

4 Validation

This section validates the presented LEMMA-based approach for the integration
of blockchain for MSA. For this purpose, we first introduce a case study as a
basis for validation, followed by the results of our approach.

Case Study. To validate our approach, we introduce the PuLS5 Park and Charge
platform as a case study. The platform is being developed using LEMMA and a
model-first approach and aims, among other things, to demonstrate the feasibil-
ity of our approach to ease the integration of blockchain functionality and MSA
technologies in the context of MDE. The PuLS Park and Charge platform itself
is being developed as part of an ongoing research project that aims to increase
the availability of charging infrastructure for electric cars in inner-city areas.
For this purpose, the platform allows citizens to share their private charging
infrastructure with others. The architecture of the platform, which provides the
sharing functionalities, is depicted in Figure 2.

4https://github.com/web3j
5https://parken-und-laden.de/



6 S. Trebbau et al.

PuLS Microservice Application

Infrastructure Microservices

I I

FFF

F

I

«Microservice»
EnvironmentService

«Microservice»
EthereumBlockchain

«Microservice»
Kafka

«Microservice»
ParkAndChargeService

«Microservice»
KeyCloak

«Microservice»
BookingService

«Microservice»
UI-Service

Legend:

I I

DD

«Database»
Database

D

«Microservice»
Infrastructure

I

F «Microservice»
Functional

«Database»
MariaDB

«Database»
MongoDB

«Microservice»
Service Discovery

«Microservice»
API Gateway

«uses»«uses»«uses»

«uses»

«uses»
«uses» «uses»

«uses»

Figure 2. Microservice Architecture of the PuLS case study application.

The PuLS platform consists of three functional microservices. The ParkAnd-
ChargeService is responsible for sharing and managing the charging infrastruc-
ture for the citizen. To monitor the city’s environmental data, the Environment
Service collects data from IoT devices to keep track of particulate matter pol-
lution. Bookings of the charging stations are realized via the BookingService.
For ensuring the integrity of the bookings, the information is persisted in a
blockchain. Storing the bookings increases citizens’ trust, as the information
can no longer be changed in the blockchain, ensuring that the process of us-
ing the charging stations is secured. The intention to incorporate blockchain at
this point builds on the interest of PuLS project partners, who have proposed
a corresponding integration in this context. Accordingly, a research context in
the PuLS project is to find out how and for which possible use cases blockchain
technology can be integrated into the Park and Charge platform. Our use case
illustrates a corresponding opportunity.

To provide a better understanding regarding the possible modeling of block-
chain-specific aspects using LEMMA, Listing 1.1 presents an excerpt of the book-
ing operation model used by the Ethereum Generator to create the Blockchain
Connection Properties for microservice deployment. Lines 1 to 6 describe the
general deployment of the BookingService. The blockchain-specific configura-
tion is defined via a technology aspect (cf. Sect. 2) in Lines 7 to 15. Depending
on the use case, the technology model referenced here can be extended by any
other specific aspects that also can be used in context of service and operation
models. The shown EthereumNetwork aspect initializes a hostName and port
for communicating with an Ethereum network node. Additionally, a gasLimit
and gasPrice, which are necessary for transaction management are defined in
the model. Furthermore, the privateKey associates an attribute for accessing an
Ethereum wallet available on the addressed network node to execute or receive
transactions.



Integrating Blockchain with MSA Using MDE. 7

1...
2@technology(container_base)
3@technology(ethereum)
4container BookingContainer
5deployment technology container_base::_deployment.Kubernetes
6deploys bookingService::v01.de.fhdo.BookingService
7depends on nodes ethereumOperation::Ethereum {
8aspects {
9ethereum::_aspects.EthereumNetwork(
10privateKey="...",
11hostName="http://localhost",
12port=8545,
13gasLimit=4712388,
14gasPrice=20000000000
15); }}

Listing 1.1. Excerpt of BookingService Operation Model.

Results. For our approach we provide a model representation of the PuLS archi-
tecture using LEMMA’s modeling languages. Based on the resulting models, the
Ethereum Generator and Web3j Genlet (cf. Figure 1) create the code artifacts
needed for the integration of basic blockchain functionality. In this context, the
Web3j Genlet and the generation of the Blockchain Configuration demon-
strate, that it is possible to support the integration of blockchain technology for
MSA using MDE. Moreover, utilizing the Ethereum Generator, it was possible
to abstract the deployment of microservices in association with blockchain. We
use a basic lines-of-code metric to gain a first estimate of the efficiency of our
approach by comparing the manually created models with the generated arti-
facts. This shows that the number of lines of generated code is higher than the
number of lines of code needed to define the models. However, it should be noted
that the metric refers to Java code. This may well produce different results for
other programming languages. For replicability purposes, all artifacts for the
approach are provided in a GitHub repository6. In addition to the LoC com-
parison, current research is working on other comparisons that provide a better
idea of the generators efficiency. For the presented case study, the integration of
the blockchain for MSA works successfully and is used in the presented PuLS
research project in the development process.

5 Related Work

De Sousa et al. [14] presents an approach to constructing a prototype based on
microservices and blockchain technology. It enables the integration and inter-
action between notary offices and other institutions, ensuring security and high
speed in exchanging information between parties. As a case study, microservice
architecture has been developed in which external institutions such as a hospi-
tal and post office and a notary’s office interact with an Ethereum blockchain to
manage a birth registration. In contrast to our approach, the integration of MSA
and blockchain is related to a specific scenario and spares the usage of MDE.

6https://github.com/SeelabFhdo/xp2021



8 S. Trebbau et al.

Gorski and Bednarski [6] propose modeling support from the perspective
of deploying distributed ledger solutions. Their approach uses MDE for trans-
forming distributed ledger models into source code, e.g., deployment scripts or
deployment configuration. Like in our approach, MDE is used to facilitate the
development process of a distributed ledger. However, our approach addresses
the integration of blockchain for MSA and focuses on blockchain as distributed
ledger solutions.

6 Conclusion and Future Work

This paper has shown by means of a concrete example that it is feasible to inte-
grate blockchain technology into MSA to increase authentication and trust (cf.
Sect. 1) by using MDE. To this end, Sect. 2 introduced background information
about blockchain and MDE of MSA. To support the integration of blockchain
in MSA, we presented our MDE-based approach in Sect. 3. This approach uti-
lizes LEMMA to generate Service-specific blockchain configurations. We validate
the approach through a case study in Sect. 4. Additionally, we provide a brief
overview of related work regarding MSA and blockchain (cf. Sect. 5).

For future research, we plan to diverge smart contracts program code from
LEMMA’s domain models. Additionally, we want to extend the existing code
generators to provide better support for different blockchain technologies. More-
over, the code generator should also create blockchain deployment-related arti-
facts to enable the deployment process of blockchain components and its various
network nodes. Another topic we will address relates to the compatibility of
MDE with verification technologies. Also, a challenge which we are going to
address in the future is the abstraction and modeling of relationships between
microservices, the various blockchain network nodes and their user wallets.

References

1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). pp. 44–51. IEEE (2016)

2. Benoit Combemale, e.a.: Engineering modeling languages. Taylor & Francis, CRC
Press (2017)

3. Dannen, C.: Solidity programming. In: Introducing Ethereum and Solidity, pp.
69–88. Springer (2017)

4. Esposito, C., Castiglione, A., Choo, K.K.R.: Challenges in delivering software in
the cloud as microservices. IEEE Cloud Computing 3(5), 10–14 (2016)

5. Evans, E.: Domain-Driven Design Reference. Dog Ear Publishing, first edn. (2015)
6. Gorski, T., Bednarski, J.: Applying model-driven engineering to dis-

tributed ledger deployment. IEEE Access 8, 118245–118261 (2020).
https://doi.org/10.1109/access.2020.3005519

7. Jézéquel, J.M., Combemale, B., Derrien, S., Guy, C., Rajopadhye, S.: Bridging the
chasm between mde and the world of compilation. Software & Systems Modeling
11(4), 581–597 (2012)



Integrating Blockchain with MSA Using MDE. 9

8. Malik, S., Dedeoglu, V., Kanhere, S.S., Jurdak, R.: TrustChain: Trust
management in blockchain and IoT supported supply chains. In: 2019
IEEE International Conference on Blockchain (Blockchain). IEEE (jul 2019).
https://doi.org/10.1109/blockchain.2019.00032

9. Ølnes, S., Ubacht, J., Janssen, M.: Blockchain in government: Benefits and impli-
cations of distributed ledger technology for information sharing (2017)

10. Quiniou, M.: Blockchain : the advent of disintermediation. ISTE, Ltd. John Wiley
& Sons, Inc, London, UK Hoboken, NJ (2019)

11. Rademacher, F., Sachweh, S., Zündorf, A.: Aspect-oriented modeling of technology
heterogeneity in microservice architecture. In: 2019 IEEE International Conference
on Software Architecture (ICSA). pp. 21–30. IEEE (2019)

12. Rademacher, F., Sachweh, S., Zundorf, A.: Deriving microservice code from
underspecified domain models using DevOps-enabled modeling languages
and model transformations. In: 2020 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA). IEEE (aug 2020).
https://doi.org/10.1109/seaa51224.2020.00047

13. Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., Zündorf, A.: Graphical
and textual model-driven microservice development. In: Microservices, pp. 147–
179. Springer (2020)

14. de Sousa, P.S., Nogueira, N.P., dos Santos, R.C., Maia, P.H.M., de Souza, J.T.:
Building a prototype based on microservices and blockchain technologies for no-
tary’s office: An academic experience report (mar 2020). https://doi.org/DOI:
10.1109/ICSA-C50368.2020.00031

15. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley, second edn. (2008)

16. Tonelli, R., Lunesu, M.I., Pinna, A., Taibi, D., Marchesi, M.: Implementing a mi-
croservices system with blockchain smart contracts. In: 2019 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE). pp. 22–31.
IEEE (2019)

17. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and
opportunities: A survey. International Journal of Web and Grid Services 14(4),
352–375 (2018)


