
A service mesh for collaboration
between geo-distributed services:

the replication case

Marie Delavergne under the supervision of
Adrien Lebre and Ronan-Alexandre Cherrueau

Context

Existing cloud apps are going to the Edge

● What is the Edge?
○ Bring compute and storage equipments as close as possible to discrete data

sources, physical elements or end users (to deal with latencies)
○ Limited network connections with disconnections between (edge) sites

● How to deal with disconnections?
○ Distribute cloud application instances on every involved sites
○ Each instance works autonomously, but should be able to

collaborate with others when needed

● Unfortunately, most Cloud applications do not follow this design

● Intrusive modifications, when possible, are tedious 1,2
○ Thousands of LoCs: ShareLatex, Kubernetes, …, OpenStack

 ⇒ We do not want to change their code

Existing cloud apps are going to the Edge

[1] Revising OpenStack to Operate Fog/Edge Computing infrastructures https://hal.inria.fr/hal-01273427
[2] ShareLatex on the Edge [...] https://dl.acm.org/doi/10.1145/3286685.3286687

https://hal.inria.fr/hal-01273427
https://dl.acm.org/doi/10.1145/3286685.3286687

Problem:

How can we use Cloud Applications in
Edge Infrastructure?

My Cloud application

ServiceA

ServiceB

Site1 Site2
Andy Bo

calls
Andy and Bo use the same application,
even though Bo is far

resourceA a = application
 resourceA create
 --sub-resourceB foo

foo

CREATE
a

GET
foo foo

resource
a

My Cloud application, example: OpenStack

Nova

Glance

Site1 Site2
Andy Bo

Andy and Bo use the same Openstack,
even though Bo is far

server a = openstack
 server create my-vm
 --image debian

debian

POST
/servers

GET
/image/Debian

boot VM

VM UUID

debian blob

Different types of collaborations

Nova

Glance

Site1 Site2
Andy

Nova

Glance

Service-to-service
collaboration

Nova

Glance

Site1 Site2
Andy

Nova

Glance

Nova

Glance

Site1 Site2

Andy

Nova

Glance

Database
collaboration

nova
broker

glance
broker

Broker-based
collaboration

How to make a cloud app edge compliant?

❖ autonomous instances
❖ on-demand collaboration
❖ no touching the code
❖ generic

design principles

● The answer lies -in part- in service-based application modularity
● Those applications are composed of services that:

○ allows separation of concerns (application domain vs deployment,
monitoring, etc.)

○ are generic and can be used in other applications
○ expose an API to communicate with each other

How to make a cloud app edge
compliant with our design

principles?

❖ genericity ?
❖ no touching the code ?
❖ autonomous instances?
❖ collaboration ?

Solution

My Cloud application

ServiceA

ServiceB

Site1 Site2
Andy Bo

calls
Andy and Bo use the same application,
even though Bo is far

resourceA a = application
 resourceA create
 --sub-resourceB foo

foo

CREATE
a

GET
toto toto

resource
a

❖ generic 🗸
❖ no touching the code 🗸
❖ autonomous instances ⨯
❖ collaboration ⨯

My Cloud application instantiated
everywhere

ServiceA1 ServiceA2

ServiceB1 ServiceB2

Site1 Site2
Andy Bo

❖ generic 🗸
❖ no touching the code 🗸
❖ autonomous instances 🗸
❖ collaboration ⨯

Andy and Bo use their own application,
closer to them

resourceA a = application
 serviceA create

 --sub-resourceB foo

foofoo

Focus on 3 collaborations
● Between services of different instances for sharing: ,
● Resource replication: &
● Resource spanning across different instances: +

ServiceA1 ServiceA2

ServiceB1 ServiceB2

Site1 Site2Andy

Sharing ,:
A required resource is on another site

ServiceA1 ServiceA2

ServiceB1 ServiceB2

Site1 Site2Andy

Cross +:
Andy creates a resource that span on

every involved sites

ServiceA1 ServiceA2

Site1 Site2Andy

Replication &:
Andy creates identical resources on

different sites

ServiceB1 ServiceB2

❖ genericity
❖ no touching the code
❖ autonomous instances
❖ collaboration

➢ sharing
➢ replication
➢ cross

Scope-lang

ServiceA1 ServiceA2

ServiceB1 ServiceB2

Site1 Site2
Andy BoScope-lang gives users a set of operations they can use

to decide where a request will be executed.

resourceA a = application
 serviceA create

 --sub-resourceB foo

≣

resourceA a = application
 serviceA create

 --sub-resourceB foo
 --scope {ServiceA: Site1,

 ServiceB: Site1} foofoo

Cheops as a building block to deal with geo-distribution

● To forward requests between services
● To manage creations, updates and deletions of resources in a consistent

manner on multiple sites

Service X1 Service X2

Cheops Cheops
● Cheops is a service to manage geo-distribution,

considering each resource as a black box.
○ Agents are located on each site
○ Uses heartbeat to check if sites are up and in the network
○ Uses its own database to store resource information only

where relevant

My cloud application with sharing
❖ generic 🗸
❖ no touching the code 🗸
❖ autonomous instances 🗸
❖ collaboration

➢ sharing 🗸
➢ replication ⨯

ServiceA1 ServiceA2

ServiceB1 ServiceB2

Site1 Site2

Andy
Andy defines the scope of the request into the
CLI. The scope specifies where the request
applies.

foo1

resourceA a = application
 resourceA create

 --sub-resourceB foo2
 --scope { serviceA: Site1 ,

 serviceB: Site2 }

Cheops

foo2

interception

Cheops

Replication

My cloud application with replication

ServiceA1 ServiceA2

ServiceB1 ServiceB2

Site1 Site2

Andy

Andy defines the scope of the request into the
CLI. She defines that the resource (managed by
Service A) will be created on both sites.

ressourceA bar = application
 resourceA create
 --scope { serviceA: Site1 &

 Site2 }

❖ generic 🗸
❖ no touching the code 🗸
❖ autonomous instances 🗸
❖ collaboration

➢ sharing 🗸
➢ replication ?

Cheops

bar info

bar1 bar2

{ bar: { Site1 → bar1 },
 { Site2 → bar2 } }

● Stores only generic information about the
resources (e.g. its unique id, where is it
located, information to retrieve it locally)

● The resource: {meta-uid: {site-uid: local-uid}}

Cheops

bar info

Different consistencies

● None: No guarantees (operations is trigger and that's all).
● Eventual: every operation on a replica will be applied to the

others eventually.
● Transactional Eventual: either with two phases commit or

long-lived transactions, depending on the resources
involved. Ensures transactions while still being available. (cf
Cure1 and Sagas2)

● Strong Serializable: strongest consistency, but the system
might be unavailable a lot.

Requires
transactions

1: https://pages.lip6.fr/Marc.Shapiro/papers/Cure-final-ICDCS16.pdf
2: http://www.amundsen.com/downloads/sagas.pdf

this is currently
the focus

https://pages.lip6.fr/Marc.Shapiro/papers/Cure-final-ICDCS16.pdf
http://www.amundsen.com/downloads/sagas.pdf

Eventual consistency with Raft

Cheops Cheops Cheops

Andy

App1 App2 App3

● The replicant where Cheops
intercepted the creation request
becomes the leader for this
resource.

● It stores a log of the updates made
to the replicas.

● Its Cheops is in charge of trying to
apply the updates on all replicas.

● When a replica is separated from
the quorum, it works only in read
mode

Going further

Cheops, for a fine-grained control
● Vanilla request

○ openstack server create my-vm --image debian

● The same, with scope
○ openstack server create my-vm --image debian --scope { Nova: Site1, Glance: Site1 }

● Sharing
○ openstack server create my-vm --image debian --scope { Nova: Site1, Glance: Site2 }

● Replication with eventual consistency
○ openstack image create debian --file ./debian .qcow2 --scope {Nova: Site1 & Site2}

● Extend to any kind of multi-sites operations

○ otherwise operator, around operator
■ server create --scope { Nova: Site1 ; Site2 }
■ server create --scope { Nova: around(Site1, 10ms) }

Thanks for your attention!

