28/06/2022

Microservice
Architecture
Recovery

Dr Nour Ali

Keynote Talk@ Agility with Microservices Programming 2022
13th of June, 2022

nour.ali@brunel.ac.uk
https://www.brunel.ac.uk/people/nour-ali
https://twitter.com/DrNourAliSE

y/ 30IAIBSOIIN

v B. A. in Computer Research fellow at () Senior Lectur_er in
Science from Bir-Zeit Lero-The Irish Software Computer Science-

University Palestine. Engineering Research Brunel University
Centre London and Head of

Brunel Software
Engineering Lab (BSEL):
http://www.brunel-

sweng.org/

PhD from Universidad

Politecnica de Valencia-

Spain

* Ambient-PRISMA: Mobile
Ambients in Aspect-

Oriented Software A
Architecture

Principal Lecturer in
Software Engineering-
University of Brighton.

6/28/2022 2

28/06/2022

Acknowledgement

Dr Nuha Alshugayran

Agenda

* Microservice Architectural Challenges
* Architecture Recovery
* MicroService Architecture Recovery (MiSAR)

* Future Directions

28/06/2022

Monolithic
Architecture

* Before the concept of microservices
evolved, most applications were built using
a monolithic architectural style.

* In Monolithic architecture, an application
is delivered as a single deployable software
artifact.

Monolith vs
Microservices

=

6/28/2022

4

== |

MICROSERVICES

28/06/2022

Each team has their own areas
of responsibity with their own All their work is synchronized
requirements and delivery demands. into a single code base.

Monolithic it s e

applications t”‘a

Single source code
cnsmmqr master repository

A |

Data walehcusmg
Mutual funds ~ Customer master
- f]

Ul team

L]

Java application server
(JBoss, Websphere, Weblogic, Tomcat)
WAR

Typical
Spring-based
web applications.

The entire application also has knowledge of
and access to all of the data sources used
within the application.

F:;] { Continuous \ Mutual funds
M= =

Mutual funds Mutual funds
Mutual funds team source code repository database

=)=
\pipclna } microservice

Customer master

.
Customer master source code repository
Usinga |- =, .)

microservice ﬁ“t = e
architecture O Sl e

Data warehouse Data
Data warehousing source code repository warehouse

=

Ul tea repository
m Invokes all business
logic as REST-based
service calls

28/06/2022

A microservice
architecture
characteristics:

Complexity

ORDER

A

’ 'f—’/ N /-T\

MICROSERVICES

AP| Gateway

10

28/06/2022

Losing the Big Picture

* Inter-service communication

* More Documentation

¢ Inter-team communication to fit all services.

%s!rﬂ-

Yy,
Yoa A’l‘

o
-' ‘\
\f':-ur 3 W

\

A slide from “Microservices: The Right Way” presentation from
Danjel Woods

11
TECHNICAL DEBT T DON‘T
: UNDERSTAND
Technical Debt WHY TT TAKES
50 LONG To
* “A design or construction ADD A MEW
approach that’s expedient in WEHDOW 6
the short term but that creates
a technical context in which the
same work will cost more to do
later than it would cost to do
now (including increased cost
over time)”. McConnell (2013)
12

28/06/2022

.. & When poll is active, respond at pollev.com/nourali975 ..

Technical debt is reduced in microservice systems

True False

Pawered hy ‘h Pall Fvervwhere

.. Start the presentation Lo see live content, For screen share software, share the entire screen, Get help at pollev.comfapp o

13

Reasons For Microservice Technical Debt

* Bad smells and Anti-patterns (Taibi and Lenarduzzi, 2018)

* Architectural erosion: the gap between the planned and actual architectur
software system Bogner et al. (2018)

Postponed architectural decisions Bogner et al. (2019)

Increased Dependencies between services de Toledo et al. (2019)

Technical Debt was increased during the migration activities to a microser\
architecture Lenarduzzi et al (2020)

Continuous delivery a principle in microservice architecture (ME)

14

28/06/2022

* Microservice Architectural Challenges

* Architecture Recovery

* MicroService Architecture Recovery (MiSAR)

* Future Directions

15
Architecture Recovery and Erosion
As- Designed As-mplemented Implementation
Architecture Architecture
?
Architectural
Violations or
Inconsistencies
16

28/06/2022

Architectural

Drift/Erosion

* We interviewed 19 senior software engineers from 17
different companies.

* RQ1: What practices are currently in place in practitioners’
companies to address AC?

Alternatives * INFORMAL PRACTICES:

for * Code Reviews

. * Tools for ensuring rules are fulfilled in code.
Architecture * Using naming conventions
Recovery * Architecture Communication:

* The usage of wikis, skype, forums and sometimes
training to share architecture knowledge;

* Conducting Scrum meetings.

* Having an architecture steering committee within
the company that is aware.

* Providing heavyweight architectural
documentation.

Ali, N., Baker, S., O’Crowley, R. et

al. Architecture consistency: State of the
practice, challenges and

requirements. Empir Software Eng 23, 224—
258 (2018).

Advantages for
Architecture
Recovery and
Consistency
Awareness

28/06/2022

* RQ3: Which software development
situations would practitioners envision
for AC approaches to be useful?

* Increasing Architectural Knowledge
Awareness

* Stopping Inconsistency Introduction

* Auditing In house and for
Outsourcing

* Evolving the Architecture.

Ali, N., Baker, S., O’Crowley, R. et
al. Architecture consistency: State
of the practice, challenges and
requirements. Empir Software
Eng 23, 224-258 (2018).

Model Driven Architecture

Transformations

Platform Specific
Model (PSM)

A specification of the
structure and function of a
system that abstracts
away technical detail

Specifies how the
functionality specified
in a PIM is realized on
a particular platform

Specifies how the
functionality specified
in a PSM generates

code to be executed

20

10

28/06/2022

Agenda

* Microservice Architectural Challenges

* Architecture Recovery

* MicroService Architecture Recovery (MiSAR)

* Future Directions

21

Research Problems

U Microservice architecture composed of many
microservices that are dynamic, small,
distributed and operated by multiple teams.

UMicroservices are developed quickly and
provides more agility of the system, which
result in continuous architectural changes.

U Software architects may lose the knowledge
of their architectural systems, and often the
documentation of the architecture is not kept
up to date.

T

11

28/06/2022

Solution: Microservice Architecture
Recovery

* Architecture recovery is a promising approach to aiding
comprehension of the complexity of microservice architecture
in a way that allows developers/architects to understand an
architecture’s implemented structure.

* We defined Microservice Architectural Recovery (MiSAR)
approach, which supports the recovery of architectural models
of microservice systems and that can unveil their architectural
aspects.

23

Microservice
Architecture
Recovery

(MiSAR)

MISAR is an approach which supports the recovery
of architectural models of microservice systems and
that can unveil their architectural aspects.

The approach aims to recover the architecture of
microservice-based systems from the
implementation level to the architecture level.

MIiSAR follows a Model-Driven Architecture (MDA)
framework.

MIiSAR was developed from empirical data to define
metamodels and the mapping rules that support
the architectural recovery of a microservice system.

12

28/06/2022

MiSAR abstraction Levels

""" "~ Microservice ™

wrmnnneenenn| Metamodel
Mapping { architecture)

Parsi : del {
Lo P <\ PIM Level (2)
/ i Y
L
Container) . 7 N
e Project build Build model Container build Configuration Source code >
‘model model model model model

| I
| |
| | PSMLevel(l
| |

I SN

|
Project build Build C“:“‘:’l?“ Cnnﬁgmahml Sourca code
file- XML fileXML e file: ﬁle JAVA
file:YAM]

Container
archsstmhcn

Text/Code Level (0)

25

Empirical studies to define MiSAR

Study 1: The aim is to identify the concepts needed to build a metamodel of
the microservice-based system, and to develop mapping rules that derive a
target model from the source model.

Study 2: This study focuses on validating and enhancing (metamodel and
mapping rules) incrementally and achieve improved artefacts for
architecture recovery.

26

13

27

Empirical
study 1

28/06/2022

An empirical study to define an initial version of
the MiSAR artefacts: the metamodel and mapping
rules.

We selected 8 open-source projects from the
GitHub repository that employed microservice
architecture.

Was designed as a manual architecture recovery
process, which includes two main phases:
Recovery Design and Recovery Execution.

Empirical Study 1 steps.

Microservice-based system

l Input

(Case study 1) Recovery Design
) n n n 2y ~
(Data | | \ Define N N
" Data " > . Define &
f ‘ ate o =% Determine Microservice a Clustering & see;
i & ;”1‘3" & Analysis ®.* Architectural Concerns & 4™ Integration o % e Extract
e hering | |) concepts | |_ hnologies | | Mapping Rules |

(-
‘ Classification of e Mapping
—h Source views map e

concerns with
,,,,,,,,,,) l Output
posi

-
Source
views
J

(\ Recovery Execution | [— ———
" - | i T
(architecture ard:'i:z\:ture (Refinement) /""—x.,, e ftory L
model | <:| ‘ model ‘ R amtataets —i loea T -
recovery | L
(case study 2, 3, 4, 5,6, 7 and 8) -
. S
Key: (] = output from single step process update T T_ —

["—'j = MISAR output

- = MIiSAR Artefacts at final stage in RD process

28

14

28/06/2022

Results: RQ1(PIM metamodel)

o D
| N API Gateway

Infrastructure
load balaricer Microservice

1.1 1.7 Configus

Fungtional Registry and
1.4 Microservice Discovery
.
[Endpoint 1..1[Service Interface] I
‘ - ' :
1.1 cconsumer/provider

-
9.1 0.* consumer operation 0.*
L 1 data store .1 0.

|[Tracing |

0.1 ol
provider operation

o wa
—

29

PSM metamodel
(Java, Spring boot/ Cloud framework)

containers: DistributedApplicationProject application project

ApplicationProject

- Projecthrtfactt ESrng

DockerContainerPort

~Containerhiame : EString JavaSpringWebFlwcApplicationProject JavaSpringMVCApplicationProject
-IageFiei: ESting
- BuidFieit EString

~Generateslogs: EBelean

MictoseniceProject

- PropciArtfact EStrng

DockerContainerLink

pendencyOrder: Ent
ksDegendsOnfiek - EStrng

ConfigurationProperty JavalserDefinedType

W

- FUByQuITtPropetyName : ESting
- PropertyValue - ESting
- ConfguratonProfie ESting

JavanterfaceType JavaClassType

Java PSM metamodel is reduced)

30

15

Empirical
study 2

28/06/2022

architectural

models

microservice systems.

We designed a new empirical study based
on 9 microservice projects.

The aim was to define the final MiSAR
artefacts in order to be able to generate

of implemented

31
@ Output Input
(Figal Versian A2: Application to AL: Application to || 1,01 Version)
o g
(Final Version ¥z MappingRules #4 Metamddels MiSAR Repository
Manual Architecture Recovery
Incrementally Refine
o Metamodel M .
apping
Rules
A e | |
Output A (Final Version)
. utpul o Recover MIiSAR artifacts
Architecture s
e II 4 ‘ architectural model| | 158 Implementation
Semi-automatic Architecture Recovery
32

16

28/06/2022

Results: MiSAR PIM Metamodel

—MessageType: ESiring
-~ BodySchema: EString
- SchemaFormal; EString

~ OperationName: EString
- OperationDescription: EString

Microservice
Architecture
— Archi EString
Functional 1. Infrastructure
Microservice Microservice
2 : Infrastructure Server
microservices Component
g [
11 er | Moo Pt
: container ——1- A "
D e
Infrastructure
1.1 Petiain Oatagory Infrastructure Client
— Emvironment: EString P
Service Interface consumer/provider \
N
— ServerURL: ESiring D
b1
L2 < <enumeration> >
Service Infrastructure Pattern Category
destinations Dependency Service Routine Pattern — AP| Gateway and Proxy
— ProviderDestination: EString | | Service Routine Pattern — Registry and Discovery
— 1. — ConsumerOperation: EString | | D Pattern - Centralized Confi
Queue Listener = - Envi EString D Pattern - Data
= = vr Development Pattern - Data Cache
|- Quevename: Esting] Dh::?sn:?:n Development Pattern — Asynchronous Message Brokering
> iheii Client Resiliency Pattern — Load Balancer
— Environment: ESiring Client Resiliency Pattern ~ Circuit Breaker
[Endpoint] Security Pattarn — Web Security
— < 1. i Security Pattern — Authorization and Authentication
RaquestUn: EString) Observability Pattern — Application Metrics Logging
messages operation o ility Pattern — Applicatien Metrics i
A O y Pattern — Metrics i
0. 0.1 Qbservability Pattern — Application Metrics Analysis
Service Service Observability Pattern — Application Metrics Monitoring
% i -
Message Operation Observability Pattern — Circuit Breaker Metrics Generation

Observabillty Pattern — Circuit Braaker Metrics Aggregation
Qbservability Pattern — Gircuit Breaker Metrics Monitoring
Observability Pattern - Log Correlation

Observability Pattern - Distributed Tracing

Observability Pattern — Distributed Tracing Monitoring

Final PIM metamodel (version 5)

33

MiSAR Implementation

Metamodels were implemented as Ecore models using the Eclipse
Modelling Framework (EMF).

Mapping rules were implemented by operational QVT transformation
language (QVTo).

34

17

28/06/2022

TrainTicket :a Case Study

Gateway
r

~
Service Advanced travel 12’“' ad":'"
Discovery | Nroute infu +ticket o :a'l ":n“} o
(k8s)

##H'*

based on a microservice architecture.

Service
Registry

route plan
price, change time|

Load
Balance
—

édibbi

* Large-size benchmark microservice
system: The case study has 69 microservices.

* The objective: is to evaluate the MiSAR
approach in terms of recovering an
architectural model of a microservice system

[Traffic Management(istio)

Monitoring & Metrics]

* TrainTicket: is a train ticket booking system

35
Steps of the MiSAR architecture recovery process:
ki
Microservice based + Decision making /J o e ﬁ‘
system ' Developer knowledge |, | e '\/.‘
JEVE/ Yaml/XmI Domain & Document R/L/
* Step 1 — Artefact collection Ariifact Collection
ot x
(semi-automatic) 8
* Step 2 — Instantiate PSM instance |rasig [—
(automatic)
e Step 3 — i :: | del
p3 Recover PIM instance o | _ m
(automatic) SV
Recover PIM instance
l]nitiate PSM instance
o s
PSM Input
36

18

28/06/2022

Step 1- Artefact collection

T AV Based Jectinto A Misar

Type Mult- Module Project Name (mandatory:

PSM Instance

SelectDocker CompeseFiles (mandtary):

Select Multi-Module Project Build Files (optionaly:

[TrinTicket

Select Muti-Module Project Build Directory (mandator

nts/My\Work/2018/NUHA/Evaluation/train-ticket-master Browse

Select oM Ecore File[mandatony:

fer-compose/docker-cemposeym

Add kem
mi
Ietar-docku-composelquicstat docker-composeym
atdoc-ompose i docte-compesml

Users/Fujitsu/workspace/MisarQVTv1/model/PSM.ecore Blowse
<

rk2018/NUHA/Evaluation/train-ticket-master/pomaxml Add ltem
Delete.

> < >
Projcts Buid Ject Module Projects Build Fils (optional: Selct Centralzed Configuration Diectories (optional):
ran-ficket-masterts-admin-basic-info-serice A Aditem |—rmastev/anmEWL\b/ms—mom:ovmg—cova’pom‘xm\ A Addhem |
bascinf
rain-ticket-master/te-admin-route-service #-master/ts-admin-ordzr-sevice/pom.xml
e Delete e N Delete
rain-ticket-master/ts-admin-user-service #t-master/ts-admin-travel-service/pom.ml
train-ticket-master/ts-assurance service t-master/ts-admin-user-service/pom.xml
train-ticket-master/te-auth-senvice -masterts-assurance-service/pom.xml
train-ticket-master/t-basic-senice -maste/ts-auth-senvice/pomam
rain-ticket-master/ts-cancel-senvice t-master/ts-basic-service/ pomaml
raintickst-master/ts-config-senice v St-master/ts-cancel-senice/pomaxml v
< > < >

Create PSM Instance

Add ttem
Delete.

37

Step 2- Instantiate

PSM instance

v ¥

Qv

v 4 RootPSM
~ 4 Dist

-
+
+
-
4+
+
+
-
+
*
i

R Ry
vy M M

Java Spring MVC Appiication Project T
Microservice Project TrainTicket Dl

xS

tributed Application Project TrainTicket

Docker Container Definition TrainTicket
Decker Container Definition TrainTicket
Decker Comainer Definition TrainTicket
Decker Container Definition TrainTicket
Docker Container Definition T
Docker Containes Definition TrainTicket
Docker Container Definition TrainTicket
Docker Container Definition TrainTicket
Decker Container Definition TrainTicket
Docker Container Definition TrainTicket
Docker Container Defintion TrainTicket
Docker Containes Definition TrainTicket
Dockes Containes Definition TrainTicket
Docker Container Definition TrainTicket
Docker Container Definition TrainTicket
Decker Container Defintion TrainTicket
Decker Container Definition TrainTicket
Dockes Containes Definition TrainTicket
Docker Containes Defintion TrainTicket
Docker Container Definition TrainTicket
Docker Container Definition TrainTicket
Docker Container Definition TrainTicket
Dockes Container Definition TrainTicket

nTicket

PP P I L L e L

@

T

Docker Containes Defi

Docker Containes Definition
Deocker Containes Defi

4 Docker Container Definition TrainTicket
4 Docker Container Definition TeainTicket
4 Docker Container Definttion TainTicket

Docker Container Definttion TrainTicket
Docker Container Definition TrainTicket

Docker Cont
Docker Cont
Dacker Cont
Docker Cont
Docker Cont
Doekes Cont
Docker Cont
Docker Cantainer Definition TrainTicket

Application Project TramTicket

Java Spring MVE Application Project TrainTicket
Java Spring MVC Application Project TrainTicket
Java Spring MVC Application Project TrainTicket

PEr PP E e

]
4+

Java Spring MVC Application Project TrainTicket
Java Spring MVC Application Project TrainTicket

PR R

ion Project TrainTicket
ion Project TrainTicket
ion Project TrainTicket
ion Project TrainTicket

4 Microservice Project TrainTicket
4 Java Spring MVC App:
4 Java Spring MVC Appl
4 Microservice Project TrainTicket
4 Java Spring MVC Apph

ion Project TrainTicket
ion Project TrainTicket

ion Project TrainTicket

Java Spring MVC Application
Java Spring MVC Application Project T

38

19

28/06/2022

M PIM

v 4 ReotPIM

v 4 Microsenvice Architecture TrainTicket

Infrastructure Microservice redis
Microsenvice ts-ui-dashboard
Infrastructure Micresenvice ts-auth- senvice
Infrastructure Microservice ts-auth-mango
Functional Microservice ts-user-senvice
Infrastructure Microservice ts-user-mongo
Functional Microservice ts-verification-code-service
Infrastructure Microservice ts-account-mange
Functional Microservice ts-route-service
Infrastructure Microservice ts-route-monge
Functional Microservice ts-contacts-service
Infrastructure Microservice ts-contacts-mange
Functional Microservice ts-order-service
Infrastructure Microservice ts-order-mongo.
Functional Microsesvice ts-order-other-senvice

Step 3- Recover
PIM instance

Functional Microservice ts-config-service
Infrastructure Microservice ti-config-monge
Functional Microservice ts-station-service
Infrastructure Microservice ts-station-monga
Functional Microservice ts-train-service
Infrastructure Micraservice ts-train-mongo
Functional Microservice ts-travel-service
Infrastructure Microservice ts-travel-mongo
Functional Microservice ts-travel2-senvice
Infrastructure Micraservice ts-travel2-mongo
Functional Microservice ts-preserve-senvice
service ts-preserve-other-service

Functional Microservice ts-price-service
Infrastructure Microservice ts-price-mango

Functional Microservice ts-inside-payment-service

pay &
Functional Microsenvice ts-execute-service
Functianal Microservice ts-payment-service
Infrastructure Microservice ts-payment-mongo

Functional Microservice ts-rebook-service
Infrastructure Microservice t3-rebook-mongo

R R R R RS SAs At E s

Infrastructure Microservice ts-assurance-mengo

PEELLLLLELLLLLLLILEELPEL LS

» 4 Function:

icroservice ts-seat-service
Functional Microservice ts-travel-plan-service
Microservice ts-ticket- office-service

Microservice ts-news-senvice
Infrastructure Microservice ts-news-monge

Microservice ts-voucher-service
Functional Microservice ts-food-map-senvice

p-mong
Functional Microservice ts-route-plan-service
Functie icroservice ts-food-service
Functional Microservice ts-consign-senvice

Functional Microservice ts-consign-price-service

9
Infrastructure Microservice ts-food-mongo
Functional Microservice ts-admin- basic-info-service
Functional Microservice ts-
icroservice ts-admin-route-service
icroservice ts-admin-travel-service
Functional Microservice ts-admin- user-service
Microservice jaeger

Microservice ms-monitoring-core

min-orderservice

39

Results (architecture recovery

(Successful recovery)

* We have recovered 36 instances of functional microservices.

* We have recovered 27 instances of infrastructure microservices.

(Partial recovery)

* We have recovered 6 instances of the supertype microservice.

Reason: the source artefacts of these microservices belong to non- JVM projects.

40

20

28/06/2022

Consistency Checking:

LN
(between the MiSAR Recovered

Model and the Documentation)

Additional elements: MiSAR recovered
more architectural elements compared to
the documentation.

Inconsistent elements: There were recovered
elements in MiSAR which were inconsistent
with the ones represented in the documentation

Missed elements: An example of a missed
component is related to tracing infrastructure,
which according to the documentation
implements Jaeger. MiSAR does not yet support
Jaeger in its repository of mapping rules.

41

Aspects of

U Support the consistency/conformance checking:

= We identified that the TrainTicket documentation
diverged from its actual implementation.

= MiSAR architecture recovery approach can obtain an
up-to-date as implemented architectural model.

UArchitectural Expressiveness: MiSAR was found to
recover extra architecture elements compared to the

POSitiVe documentation.

UThe Ability of MiSAR to Discover the Existence of

MiS AR Non-JVM Applications.

21

28/06/2022

Agenda

* Microservice Architectural Challenges
* Architecture Recovery

* MicroService Architecture Recovery (MiSAR)

* Future Directions

43
Future of Microservice Architecture
Recovery
Enrich/Complement the Architectural models with:

* Economics.

* Quality attribute analysis

* Security property checks in architectural models

* Conformance/Consistency Checking

* Auditing
44

22

28/06/2022

Thank you

Questions?

Dr. Nour Ali

Home page: http://www.brunel.ac.uk/people/nour-ali/

Email: Nour.Ali@brunel.ac.uk

Twitter https://twitter.com/DrNourAliSE

45

23

